Spaces:
Runtime error
Runtime error
#Experimental Class for Smiles Enumeration, Iterator and SmilesIterator adapted from Keras 1.2.2 | |
from rdkit import Chem | |
import numpy as np | |
import threading | |
class Iterator(object): | |
"""Abstract base class for data iterators. | |
# Arguments | |
n: Integer, total number of samples in the dataset to loop over. | |
batch_size: Integer, size of a batch. | |
shuffle: Boolean, whether to shuffle the data between epochs. | |
seed: Random seeding for data shuffling. | |
""" | |
def __init__(self, n, batch_size, shuffle, seed): | |
self.n = n | |
self.batch_size = batch_size | |
self.shuffle = shuffle | |
self.batch_index = 0 | |
self.total_batches_seen = 0 | |
self.lock = threading.Lock() | |
self.index_generator = self._flow_index(n, batch_size, shuffle, seed) | |
if n < batch_size: | |
raise ValueError('Input data length is shorter than batch_size\nAdjust batch_size') | |
def reset(self): | |
self.batch_index = 0 | |
def _flow_index(self, n, batch_size=32, shuffle=False, seed=None): | |
# Ensure self.batch_index is 0. | |
self.reset() | |
while 1: | |
if seed is not None: | |
np.random.seed(seed + self.total_batches_seen) | |
if self.batch_index == 0: | |
index_array = np.arange(n) | |
if shuffle: | |
index_array = np.random.permutation(n) | |
current_index = (self.batch_index * batch_size) % n | |
if n > current_index + batch_size: | |
current_batch_size = batch_size | |
self.batch_index += 1 | |
else: | |
current_batch_size = n - current_index | |
self.batch_index = 0 | |
self.total_batches_seen += 1 | |
yield (index_array[current_index: current_index + current_batch_size], | |
current_index, current_batch_size) | |
def __iter__(self): | |
# Needed if we want to do something like: | |
# for x, y in data_gen.flow(...): | |
return self | |
def __next__(self, *args, **kwargs): | |
return self.next(*args, **kwargs) | |
class SmilesIterator(Iterator): | |
"""Iterator yielding data from a SMILES array. | |
# Arguments | |
x: Numpy array of SMILES input data. | |
y: Numpy array of targets data. | |
smiles_data_generator: Instance of `SmilesEnumerator` | |
to use for random SMILES generation. | |
batch_size: Integer, size of a batch. | |
shuffle: Boolean, whether to shuffle the data between epochs. | |
seed: Random seed for data shuffling. | |
dtype: dtype to use for returned batch. Set to keras.backend.floatx if using Keras | |
""" | |
def __init__(self, x, y, smiles_data_generator, | |
batch_size=32, shuffle=False, seed=None, | |
dtype=np.float32 | |
): | |
if y is not None and len(x) != len(y): | |
raise ValueError('X (images tensor) and y (labels) ' | |
'should have the same length. ' | |
'Found: X.shape = %s, y.shape = %s' % | |
(np.asarray(x).shape, np.asarray(y).shape)) | |
self.x = np.asarray(x) | |
if y is not None: | |
self.y = np.asarray(y) | |
else: | |
self.y = None | |
self.smiles_data_generator = smiles_data_generator | |
self.dtype = dtype | |
super(SmilesIterator, self).__init__(x.shape[0], batch_size, shuffle, seed) | |
def next(self): | |
"""For python 2.x. | |
# Returns | |
The next batch. | |
""" | |
# Keeps under lock only the mechanism which advances | |
# the indexing of each batch. | |
with self.lock: | |
index_array, current_index, current_batch_size = next(self.index_generator) | |
# The transformation of images is not under thread lock | |
# so it can be done in parallel | |
batch_x = np.zeros(tuple([current_batch_size] + [ self.smiles_data_generator.pad, self.smiles_data_generator._charlen]), dtype=self.dtype) | |
for i, j in enumerate(index_array): | |
smiles = self.x[j:j+1] | |
x = self.smiles_data_generator.transform(smiles) | |
batch_x[i] = x | |
if self.y is None: | |
return batch_x | |
batch_y = self.y[index_array] | |
return batch_x, batch_y | |
class SmilesEnumerator(object): | |
"""SMILES Enumerator, vectorizer and devectorizer | |
#Arguments | |
charset: string containing the characters for the vectorization | |
can also be generated via the .fit() method | |
pad: Length of the vectorization | |
leftpad: Add spaces to the left of the SMILES | |
isomericSmiles: Generate SMILES containing information about stereogenic centers | |
enum: Enumerate the SMILES during transform | |
canonical: use canonical SMILES during transform (overrides enum) | |
""" | |
def __init__(self, charset = '@C)(=cOn1S2/H[N]\\', pad=120, leftpad=True, isomericSmiles=True, enum=True, canonical=False): | |
self._charset = None | |
self.charset = charset | |
self.pad = pad | |
self.leftpad = leftpad | |
self.isomericSmiles = isomericSmiles | |
self.enumerate = enum | |
self.canonical = canonical | |
def charset(self): | |
return self._charset | |
def charset(self, charset): | |
self._charset = charset | |
self._charlen = len(charset) | |
self._char_to_int = dict((c,i) for i,c in enumerate(charset)) | |
self._int_to_char = dict((i,c) for i,c in enumerate(charset)) | |
def fit(self, smiles, extra_chars=[], extra_pad = 5): | |
"""Performs extraction of the charset and length of a SMILES datasets and sets self.pad and self.charset | |
#Arguments | |
smiles: Numpy array or Pandas series containing smiles as strings | |
extra_chars: List of extra chars to add to the charset (e.g. "\\\\" when "/" is present) | |
extra_pad: Extra padding to add before or after the SMILES vectorization | |
""" | |
charset = set("".join(list(smiles))) | |
#print(charset) | |
self.charset = "".join(charset.union(set(extra_chars))) | |
#print(self.charset) | |
self.pad = max([len(smile) for smile in smiles]) + extra_pad | |
def randomize_smiles(self, smiles): | |
"""Perform a randomization of a SMILES string | |
must be RDKit sanitizable""" | |
m = Chem.MolFromSmiles(smiles) | |
if m is None: | |
return None # Invalid SMILES | |
ans = list(range(m.GetNumAtoms())) | |
np.random.shuffle(ans) | |
nm = Chem.RenumberAtoms(m,ans) | |
return Chem.MolToSmiles(nm, canonical=self.canonical, isomericSmiles=self.isomericSmiles) | |
def transform(self, smiles): | |
"""Perform an enumeration (randomization) and vectorization of a Numpy array of smiles strings | |
#Arguments | |
smiles: Numpy array or Pandas series containing smiles as strings | |
""" | |
one_hot = np.zeros((smiles.shape[0], self.pad, self._charlen),dtype=np.int8) | |
if self.leftpad: | |
#print(smiles) | |
for i,ss in enumerate(smiles): | |
if self.enumerate: | |
ss = self.randomize_smiles(ss) | |
l = len(ss) | |
#print("???", ss) | |
diff = self.pad - l | |
for j,c in enumerate(ss): | |
one_hot[i,j+diff,self._char_to_int[c]] = 1 | |
return one_hot | |
else: | |
for i,ss in enumerate(smiles): | |
if self.enumerate: | |
ss = self.randomize_smiles(ss) | |
for j,c in enumerate(ss): | |
one_hot[i,j,self._char_to_int[c]] = 1 | |
return one_hot | |
def reverse_transform(self, vect): | |
""" Performs a conversion of a vectorized SMILES to a smiles strings | |
charset must be the same as used for vectorization. | |
#Arguments | |
vect: Numpy array of vectorized SMILES. | |
""" | |
smiles = [] | |
for v in vect: | |
#mask v | |
v=v[v.sum(axis=1)==1] | |
#Find one hot encoded index with argmax, translate to char and join to string | |
smile = "".join(self._int_to_char[i] for i in v.argmax(axis=1)) | |
smiles.append(smile) | |
return np.array(smiles) | |