Jae-Won Chung commited on
Commit
4cf6de5
1 Parent(s): 68300e6

Add one more commit to lm-evaluation-harness

Browse files
deployment/benchmark.Dockerfile CHANGED
@@ -26,7 +26,7 @@ RUN cd /workspace/leaderboard && pip install -e .[benchmark]
26
  RUN cd /workspace \
27
  && git clone https://github.com/EleutherAI/lm-evaluation-harness.git \
28
  && cd lm-evaluation-harness \
29
- && git checkout e9f1af36d2f6f8449e3cd132e6885d3b010ec838 \
30
  && rm -r .git \
31
  && pip install -e .
32
 
 
26
  RUN cd /workspace \
27
  && git clone https://github.com/EleutherAI/lm-evaluation-harness.git \
28
  && cd lm-evaluation-harness \
29
+ && git checkout d1537059b515511801ae9b742f8e949f1bfcd010 \
30
  && rm -r .git \
31
  && pip install -e .
32
 
docs/leaderboard.md CHANGED
@@ -42,7 +42,7 @@ Find our benchmark script for one model [here](https://github.com/ml-energy/lead
42
  - PyTorch 2.0.1
43
  - [Zeus](https://ml.energy/zeus) -- For GPU time and energy measurement
44
  - [FastChat](https://github.com/lm-sys/fastchat) -- For running inference on various models
45
- - [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/e9f1af36d2f6f8449e3cd132e6885d3b010ec838) -- For NLP evaluation metrics
46
 
47
  ### Hardware
48
 
 
42
  - PyTorch 2.0.1
43
  - [Zeus](https://ml.energy/zeus) -- For GPU time and energy measurement
44
  - [FastChat](https://github.com/lm-sys/fastchat) -- For running inference on various models
45
+ - [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/d1537059b515511801ae9b742f8e949f1bfcd010) -- For NLP evaluation metrics
46
 
47
  ### Hardware
48
 
pegasus/README.md CHANGED
@@ -65,7 +65,7 @@ After all the tasks finish, aggregate all the data into one node and run [`compu
65
 
66
  ## NLP benchmark
67
 
68
- We'll use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/e9f1af36d2f6f8449e3cd132e6885d3b010ec838) to run models through three NLP datasets: ARC challenge (`arc`), HellaSwag (`hellaswag`), and TruthfulQA (`truthfulqa`).
69
 
70
  Use Pegasus to run benchmarks for all the models across all nodes.
71
 
 
65
 
66
  ## NLP benchmark
67
 
68
+ We'll use [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/d1537059b515511801ae9b742f8e949f1bfcd010) to run models through three NLP datasets: ARC challenge (`arc`), HellaSwag (`hellaswag`), and TruthfulQA (`truthfulqa`).
69
 
70
  Use Pegasus to run benchmarks for all the models across all nodes.
71