Spaces:
Running
Running
from __future__ import annotations | |
import copy | |
import json | |
import random | |
import yaml | |
import requests | |
import itertools | |
import contextlib | |
import argparse | |
import os | |
from typing import Literal | |
from dateutil import parser, tz | |
import numpy as np | |
import gradio as gr | |
import pandas as pd | |
import plotly.io as pio | |
import plotly.express as px | |
from pandas.api.types import is_numeric_dtype, is_float_dtype | |
pio.templates.default = "plotly_white" | |
from spitfight.colosseum.client import ControllerClient | |
COLOSSEUM_UP = False | |
COLOSSEUM_DOWN_MESSAGE = f"<br/><h2 style='text-align: center'>The Colosseum is currently down for maintenance.</h2>" | |
class TableManager: | |
def __init__(self, data_dir: str) -> None: | |
"""Load leaderboard data from CSV files in data_dir. | |
Inside `data_dir`, there should be: | |
- `models.json`: a JSON file containing information about each model. | |
- `schema.yaml`: a YAML file containing the schema of the benchmark. | |
- `score.csv`: a CSV file containing the NLP evaluation metrics of each model. | |
- `*_benchmark.csv`: CSV files containing the system benchmark results. | |
Especially, the `*_benchmark.csv` files should be named after the | |
parameters used in the benchmark. For example, for the CSV file that | |
contains benchmarking results for A100 and the chat-concise task | |
(see `schema.yaml`) for possible choices, the file should be named | |
`A100_chat-concise_benchmark.csv`. | |
""" | |
# Load and merge CSV files. | |
df = self._read_tables(data_dir) | |
# Add the #params column. | |
models = json.load(open(f"{data_dir}/models.json")) | |
df["parameters"] = df["model"].apply(lambda x: models[x]["params"]) | |
# Make the first column (model) an HTML anchor to the model's website. | |
def format_model_link(model_name: str) -> str: | |
url = models[model_name]["url"] | |
nickname = models[model_name]["nickname"] | |
return ( | |
f'<a style="text-decoration: underline; text-decoration-style: dotted" ' | |
f'target="_blank" href="{url}">{nickname}</a>' | |
) | |
df["model"] = df["model"].apply(format_model_link) | |
# Sort by our 'energy efficiency' score. | |
df = df.sort_values(by="energy", ascending=True) | |
# The full table where all the data are. | |
self.full_df = df | |
# Default view of the table is to only show the first options. | |
self.set_filter_get_df() | |
def _read_tables(self, data_dir: str) -> pd.DataFrame: | |
"""Read tables.""" | |
df_score = pd.read_csv(f"{data_dir}/score.csv") | |
with open(f"{data_dir}/schema.yaml") as file: | |
self.schema: dict[str, list] = yaml.safe_load(file) | |
res_df = pd.DataFrame() | |
# Do a cartesian product of all the choices in the schema | |
# and try to read the corresponding CSV files. | |
for choice in itertools.product(*self.schema.values()): | |
filepath = f"{data_dir}/{'_'.join(choice)}_benchmark.csv" | |
with contextlib.suppress(FileNotFoundError): | |
df = pd.read_csv(filepath) | |
for key, val in zip(self.schema.keys(), choice): | |
df.insert(1, key, val) | |
res_df = pd.concat([res_df, df]) | |
if res_df.empty: | |
raise ValueError(f"No benchmark CSV files were read from {data_dir=}.") | |
df = pd.merge(res_df, df_score, on=["model"]).round(2) | |
# Order columns. | |
columns = df.columns.to_list() | |
cols_to_order = ["model"] | |
cols_to_order.extend(self.schema.keys()) | |
cols_to_order.append("energy") | |
columns = cols_to_order + [col for col in columns if col not in cols_to_order] | |
df = df[columns] | |
# Delete rows with *any* NaN values. | |
df = df.dropna() | |
return df | |
def _format_msg(self, text: str) -> str: | |
"""Formats into HTML that prints in Monospace font.""" | |
return f"<pre style='font-family: monospace'>{text}</pre>" | |
def add_column(self, column_name: str, formula: str): | |
"""Create and add a new column with the given formula.""" | |
# If the user did not provide the name of the new column, | |
# generate a unique name for them. | |
if not column_name: | |
counter = 1 | |
while (column_name := f"custom{counter}") in self.full_df.columns: | |
counter += 1 | |
# If the user did not provide a formula, return an error message. | |
if not formula: | |
return self.cur_df, self._format_msg("Please enter a formula.") | |
# If there is an equal sign in the formula, `df.eval` will | |
# return an entire DataFrame with the new column, instead of | |
# just the new column. This is not what we want, so we check | |
# for this case and return an error message. | |
if "=" in formula: | |
return self.cur_df, self._format_msg("Invalid formula: expr cannot contain '='.") | |
# The user may want to update an existing column. | |
verb = "Updated" if column_name in self.full_df.columns else "Added" | |
# Evaluate the formula and catch any error. | |
try: | |
# Give the users some helper functions that can be used in the formula | |
# like "@sum(response_length)". Also wipe out some global variables. | |
col = self.full_df.eval( | |
formula, | |
local_dict={"sum": sum, "len": len, "max": max, "min": min}, | |
global_dict={"global_tbm": None}, | |
) | |
except Exception as exc: | |
return self.cur_df, self._format_msg(f"Invalid formula: {exc}") | |
# If the result is a numeric scalar, make it a Series. | |
# We may have deleted some models (rows) form the full dataframe when we | |
# called dropna, so we need to query the maximum index instead of taking len. | |
if isinstance(col, (int, float)): | |
col = pd.Series([col] * (self.full_df.index.max() + 1)) | |
# We only accept numeric columns. | |
if not is_numeric_dtype(col): | |
return self.cur_df, self._format_msg("Invalid formula: result must be numeric.") | |
# Round if it's floating point. | |
if is_float_dtype(col): | |
col = col.round(2) | |
# If the column already exists, update it. | |
if column_name in self.full_df.columns: | |
self.full_df[column_name] = col | |
else: | |
self.full_df.insert(len(self.schema) + 1, column_name, col) | |
# If adding a column succeeded, `self.cur_df` should also be updated. | |
self.cur_df = self.full_df.loc[self.cur_index] | |
return self.cur_df, self._format_msg(f"{verb} column '{column_name}'.") | |
def get_dropdown(self): | |
columns = self.full_df.columns.tolist()[1:] | |
return [ | |
gr.Dropdown(choices=columns, value="parameters", label="X"), | |
gr.Dropdown(choices=columns, value="energy", label="Y"), | |
gr.Dropdown(choices=["None", *columns], label="Z (optional)"), | |
] | |
def update_dropdown(self): | |
columns = self.full_df.columns.tolist()[1:] | |
return [ | |
gr.Dropdown.update(choices=columns), | |
gr.Dropdown.update(choices=columns), | |
gr.Dropdown.update(choices=["None", *columns]), | |
] | |
def set_filter_get_df(self, *filters) -> pd.DataFrame: | |
"""Set the current set of filters and return the filtered DataFrame.""" | |
# If the filter is empty, we default to the first choice for each key. | |
if not filters: | |
filters = [choices[:1] for choices in self.schema.values()] | |
index = np.full(len(self.full_df), True) | |
for setup, choice in zip(self.schema, filters): | |
index = index & self.full_df[setup].isin(choice) | |
self.cur_df = self.full_df.loc[index] | |
self.cur_index = index | |
return self.cur_df | |
def plot_scatter(self, width, height, x, y, z): | |
# The user did not select either x or y. | |
if not x or not y: | |
return None, width, height, self._format_msg("Please select both X and Y.") | |
# Width and height may be an empty string. Then we set them to 600. | |
if not width and not height: | |
width, height = "600", "600" | |
elif not width: | |
width = height | |
elif not height: | |
height = width | |
try: | |
width, height = int(width), int(height) | |
except ValueError: | |
return None, width, height, self._format_msg("Width and height should be positive integers.") | |
# Strip the <a> tag from model names. | |
text = self.cur_df["model"].apply(lambda x: x.split(">")[1].split("<")[0]) | |
# Hide model names since they clutter the plots, and only show them on hover. | |
if z is None or z == "None" or z == "": | |
fig = px.scatter(self.cur_df, x=x, y=y, hover_name=text) | |
else: | |
fig = px.scatter_3d(self.cur_df, x=x, y=y, z=z, hover_name=text) | |
fig.update_traces(marker=dict(size=12, line=dict(width=2, color="DarkSlateGrey"))) | |
fig.update_layout(width=width, height=height) | |
return fig, width, height, "" | |
# The global instance of the TableManager should only be used when | |
# initializing components in the Gradio interface. If the global instance | |
# is mutated while handling user sessions, the change will be reflected | |
# in every user session. Instead, the instance provided by gr.State should | |
# be used. | |
global_tbm = TableManager("data") | |
# Fetch the latest update date of the leaderboard repository. | |
resp = requests.get("https://api.github.com/repos/ml-energy/leaderboard/commits/master") | |
if resp.status_code != 200: | |
current_date = "[Failed to fetch]" | |
print("Failed to fetch the latest release date of the leaderboard repository.") | |
print(resp.json()) | |
else: | |
current_datetime = parser.parse(resp.json()["commit"]["author"]["date"]) | |
current_date = current_datetime.astimezone(tz.gettz("US/Eastern")).strftime("%Y-%m-%d") | |
# Custom JS. | |
# XXX: This is a hack to make the model names clickable. | |
# Ideally, we should set `datatype` in the constructor of `gr.DataFrame` to | |
# `["markdown"] + ["number"] * (len(df.columns) - 1)` and format models names | |
# as an HTML <a> tag. However, because we also want to dynamically add new | |
# columns to the table and Gradio < 4.0 does not support updating `datatype` with | |
# `gr.DataFrame.update` yet, we need to manually walk into the DOM and replace | |
# the innerHTML of the model name cells with dynamically interpreted HTML. | |
# Desired feature tracked at https://github.com/gradio-app/gradio/issues/3732 | |
dataframe_update_js = f""" | |
function format_model_link() {{ | |
// Iterate over the cells of the first column of the leaderboard table. | |
for (let index = 1; index <= {len(global_tbm.full_df)}; index++) {{ | |
// Get the cell. | |
var cell = document.querySelector( | |
`#tab-leaderboard > div > div > div > table > tbody > tr:nth-child(${{index}}) > td:nth-child(1) > div > span` | |
); | |
// If nothing was found, it likely means that now the visible table has less rows | |
// than the full table. This happens when the user filters the table. In this case, | |
// we should just return. | |
if (cell == null) break; | |
// This check exists to make this function idempotent. | |
// Multiple changes to the Dataframe component may invoke this function, | |
// multiple times to the same HTML table (e.g., adding and sorting cols). | |
// Thus, we check whether we already formatted the model names by seeing | |
// whether the child of the cell is a text node. If it is not, | |
// it means we already parsed it into HTML, so we should just return. | |
if (cell.firstChild.nodeType != 3) break; | |
// Decode and interpret the innerHTML of the cell as HTML. | |
var decoded_string = new DOMParser().parseFromString(cell.innerHTML, "text/html").documentElement.textContent; | |
var temp = document.createElement("template"); | |
temp.innerHTML = decoded_string; | |
var model_anchor = temp.content.firstChild; | |
// Replace the innerHTML of the cell with the interpreted HTML. | |
cell.replaceChildren(model_anchor); | |
}} | |
// Return all arguments as is. | |
return arguments | |
}} | |
""" | |
# Custom CSS. | |
custom_css = """ | |
/* Make ML.ENERGY look like a clickable logo. */ | |
.text-logo { | |
color: #23d175 !important; | |
text-decoration: none !important; | |
} | |
/* Make the submit button the same color as the logo. */ | |
.btn-submit { | |
background: #23d175 !important; | |
color: white !important; | |
border: 0 !important; | |
} | |
/* Center the plotly plot inside its container. */ | |
.plotly > div { | |
margin: auto !important; | |
} | |
/* Limit the width of the first column to 300 px. */ | |
table td:first-child, | |
table th:first-child { | |
max-width: 300px; | |
overflow: auto; | |
white-space: nowrap; | |
} | |
/* Make tab buttons larger */ | |
.tab-nav > button { | |
font-size: 18px !important; | |
} | |
/* Color texts. */ | |
.green-text { | |
color: #23d175 !important; | |
} | |
.red-text { | |
color: #ff3860 !important; | |
} | |
/* Flashing model name borders. */ | |
@keyframes blink { | |
0%, 33%, 67%, 100% { | |
border-color: transparent; | |
} | |
17%, 50%, 83% { | |
border-color: #23d175; | |
} | |
} | |
/* Older browser compatibility */ | |
@-webkit-keyframes blink { | |
0%, 33%, 67%, 100% { | |
border-color: transparent; | |
} | |
17%, 50%, 83% { | |
border-color: #23d175; | |
} | |
} | |
.model-name-text { | |
border: 2px solid transparent; /* Transparent border initially */ | |
animation: blink 3s ease-in-out 1; /* One complete cycle of animation, lasting 3 seconds */ | |
-webkit-animation: blink 3s ease-in-out 1; /* Older browser compatibility */ | |
} | |
/* Grey out components when the Colosseum is down. */ | |
.greyed-out { | |
pointer-events: none; | |
opacity: 0.4; | |
} | |
""" | |
intro_text = """ | |
<h2>How much energy do modern Large Language Models (LLMs) consume for inference?</h2> | |
<p style="font-size: 16px">We used <a href="https://ml.energy/zeus">Zeus</a> to benchmark various open source LLMs in terms of how much time and energy they consume for inference. | |
Time and energy are of course not the only things we care about -- so we also benchmarked all of the models on a variety of NLP datasets, | |
including the ARC Challenge (reasoning), HellaSwag (common sense), and TruthfulQA (truthfulness).</p> | |
<p style="font-size: 16px">For more detailed information, please take a look at the <b>About</b> tab. | |
Every benchmark is limited in some sense -- Before you interpret the results, please take a look at the <b>Limitations</b> section there, too.</p> | |
""" | |
# The app will not start without a controller address set. | |
controller_addr = os.environ.get("COLOSSEUM_CONTROLLER_ADDR") | |
if controller_addr is None: | |
COLOSSEUM_UP = False | |
COLOSSEUM_DOWN_MESSAGE = "<br/><h2 style='text-align: center'>Disabled Colosseum for local testing.</h2>" | |
controller_addr = "localhost" | |
global_controller_client = ControllerClient(controller_addr=controller_addr, timeout=15) | |
# Load the list of models. To reload, the app should be restarted. | |
RANDOM_MODEL_NAME = "Random" | |
RANDOM_USER_PREFERENCE = "Two random models" | |
global_available_models = global_controller_client.get_available_models() if COLOSSEUM_UP else [] | |
model_name_to_user_pref = {model: f"One is {model}" for model in global_available_models} | |
model_name_to_user_pref[RANDOM_MODEL_NAME] = RANDOM_USER_PREFERENCE | |
user_pref_to_model_name = {v: k for k, v in model_name_to_user_pref.items()} | |
# Colosseum helper functions. | |
def enable_interact(): | |
return [gr.update(interactive=True)] * 2 | |
def disable_interact(): | |
return [gr.update(interactive=False)] * 2 | |
def consumed_less_energy_message(energy_a, energy_b): | |
"""Return a message that indicates that the user chose the model that consumed less energy. | |
By default report in "%f %" but if the difference is larger than 2 times, report in "%f X". | |
""" | |
less_energy = min(energy_a, energy_b) | |
more_energy = max(energy_a, energy_b) | |
factor = less_energy / more_energy | |
how_much = f"{1 / factor:.1f}x" if factor <= 0.5 else f"{100 - factor * 100:.1f}%" | |
return f"<h2>That response also <span class='green-text'>consumed {how_much} less energy</span> ({energy_a:,.0f} J vs. {energy_b:,.0f} J)!</h2>" | |
def consumed_more_energy_message(energy_a, energy_b): | |
"""Return a message that indicates that the user chose the model that consumed more energy. | |
By default report in "%f %" but if the difference is larger than 2 times, report in "%f X". | |
""" | |
less_energy = min(energy_a, energy_b) | |
more_energy = max(energy_a, energy_b) | |
factor = more_energy / less_energy | |
how_much = f"{factor:.1f}x" if factor >= 2.0 else f"{factor * 100 - 100:.1f}%" | |
return f"<h2>That response <span class='red-text'>consumed {how_much} more energy</span> ({energy_a:,.0f} J vs. {energy_b:,.0f} J).</h2>" | |
# Colosseum event handlers | |
def on_load(): | |
"""Intialize the dataframe, shuffle the model preference dropdown choices.""" | |
dataframe = global_tbm.set_filter_get_df() | |
available_models = copy.deepcopy(global_available_models) | |
random.shuffle(available_models) | |
available_models.insert(0, RANDOM_MODEL_NAME) | |
return dataframe, gr.Dropdown.update(choices=[model_name_to_user_pref[model] for model in available_models]) | |
def add_prompt_disable_submit(prompt, history_a, history_b): | |
"""Add the user's prompt to the two model's history and disable further submission.""" | |
client = global_controller_client.fork() | |
return [ | |
gr.Textbox.update(value=" ", interactive=False), | |
gr.Button.update(interactive=False), | |
gr.Dropdown.update(interactive=False), | |
history_a + [[prompt, ""]], | |
history_b + [[prompt, ""]], | |
client, | |
] | |
def generate_responses(client: ControllerClient, user_preference, history_a, history_b): | |
"""Generate responses for the two models.""" | |
model_preference = user_pref_to_model_name[user_preference] | |
for resp_a, resp_b in itertools.zip_longest( | |
client.prompt(prompt=history_a[-1][0], index=0, model_preference=model_preference), | |
client.prompt(prompt=history_b[-1][0], index=1, model_preference=model_preference), | |
): | |
if resp_a is not None: | |
history_a[-1][1] += resp_a | |
if resp_b is not None: | |
history_b[-1][1] += resp_b | |
yield [history_a, history_b] | |
def make_resp_vote_func(victory_index: Literal[0, 1]): | |
"""Return a function that will be called when the user clicks on response preference vote buttons.""" | |
def resp_vote_func(client: ControllerClient): | |
vote_response = client.response_vote(victory_index=victory_index) | |
model_name_a, model_name_b = map(lambda n: f"## {n}", vote_response.model_names) | |
energy_a, energy_b = vote_response.energy_consumptions | |
# User liked the model that also consumed less energy. | |
if (victory_index == 0 and energy_a <= energy_b) or (victory_index == 1 and energy_a >= energy_b): | |
energy_message = consumed_less_energy_message(energy_a, energy_b) | |
return [ | |
# Disable response vote buttons | |
gr.Button.update(interactive=False), gr.Button.update(interactive=False), | |
# Reveal model names | |
gr.Markdown.update(model_name_a, visible=True), gr.Markdown.update(model_name_b, visible=True), | |
# Display energy consumption comparison message | |
gr.Markdown.update(energy_message, visible=True), | |
# Keep energy vote buttons hidden | |
gr.Button.update(visible=False, interactive=False), gr.Button.update(visible=False, interactive=False), | |
# Enable reset button | |
gr.Button.update(visible=True, interactive=True), | |
] | |
# User liked the model that consumed more energy. | |
else: | |
energy_message = consumed_more_energy_message(energy_a, energy_b) | |
return [ | |
# Disable response vote buttons | |
gr.Button.update(interactive=False), gr.Button.update(interactive=False), | |
# Leave model names hidden | |
gr.Markdown.update(visible=False), gr.Markdown.update(visible=False), | |
# Display energy consumption comparison message | |
gr.Markdown.update(energy_message, visible=True), | |
# Reveal and enable energy vote buttons | |
gr.Button.update(visible=True, interactive=True), gr.Button.update(visible=True, interactive=True), | |
# Keep the reset button disabled | |
gr.Button.update(visible=False, interactive=False), | |
] | |
return resp_vote_func | |
def make_energy_vote_func(is_worth: bool): | |
"""Return a function that will be called when the user clicks on energy vote buttons.""" | |
def energy_vote_func(client: ControllerClient, energy_message: str): | |
vote_response = client.energy_vote(is_worth=is_worth) | |
model_name_a, model_name_b = map(lambda n: f"## {n}", vote_response.model_names) | |
return [ | |
# Reveal model names | |
gr.Markdown.update(model_name_a, visible=True), gr.Markdown.update(model_name_b, visible=True), | |
# Disable energy vote buttons | |
gr.Button.update(interactive=False), gr.Button.update(interactive=False), | |
# Enable reset button | |
gr.Button.update(interactive=True, visible=True), | |
# Append to the energy comparison message | |
energy_message[:-5] + (" Fair enough.</h2>" if is_worth else " Wasn't worth it.</h2>"), | |
] | |
return energy_vote_func | |
def play_again(): | |
available_models = copy.deepcopy(global_available_models) | |
random.shuffle(available_models) | |
available_models.insert(0, RANDOM_MODEL_NAME) | |
return [ | |
# Clear chatbot history | |
None, None, | |
# Enable prompt textbox and submit button | |
gr.Textbox.update(value="", interactive=True), gr.Button.update(interactive=True), | |
# Mask model names | |
gr.Markdown.update(value="", visible=False), gr.Markdown.update(value="", visible=False), | |
# Hide energy vote buttons and message | |
gr.Button.update(visible=False), gr.Button.update(visible=False), gr.Markdown.update(visible=False), | |
# Enable model preference dropdown and shuffle choices | |
gr.Dropdown.update(value=RANDOM_USER_PREFERENCE, choices=[model_name_to_user_pref[model] for model in available_models], interactive=True), | |
# Disable reset button | |
gr.Button.update(interactive=False, visible=False), | |
] | |
focus_prompt_input_js = """ | |
function() { | |
for (let textarea of document.getElementsByTagName("textarea")) { | |
if (textarea.hasAttribute("autofocus")) { | |
textarea.focus(); | |
return; | |
} | |
} | |
} | |
""" | |
with gr.Blocks(css=custom_css) as block: | |
tbm = gr.State(global_tbm) # type: ignore | |
with gr.Box(): | |
gr.HTML("<h1><a href='https://ml.energy' class='text-logo'>ML.ENERGY</a> Leaderboard</h1>") | |
with gr.Tabs(): | |
# Tab: Colosseum. | |
with gr.TabItem("Colosseum ⚔️️"): | |
if COLOSSEUM_UP: | |
gr.Markdown(open("docs/colosseum_top.md").read()) | |
else: | |
gr.HTML(COLOSSEUM_DOWN_MESSAGE) | |
gr.HTML("<h3 style='text-align: center'>The energy leaderboard is still available.</h3><br/>") | |
with gr.Row(): | |
model_preference_dropdown = gr.Dropdown( | |
value=RANDOM_USER_PREFERENCE, | |
label="Prefer a specific model?", | |
interactive=COLOSSEUM_UP, | |
elem_classes=None if COLOSSEUM_UP else ["greyed-out"], | |
) | |
with gr.Group(): | |
with gr.Row(): | |
prompt_input = gr.Textbox( | |
show_label=False, | |
placeholder="Input your prompt, e.g., 'Explain machine learning in simple terms.'", | |
container=False, | |
scale=20, | |
interactive=COLOSSEUM_UP, | |
elem_classes=None if COLOSSEUM_UP else ["greyed-out"], | |
) | |
prompt_submit_btn = gr.Button( | |
value="⚔️️ Fight!", | |
elem_classes=["btn-submit"] if COLOSSEUM_UP else ["greyed-out"], | |
min_width=60, | |
scale=1, | |
interactive=COLOSSEUM_UP, | |
) | |
with gr.Row(): | |
masked_model_names = [] | |
chatbots = [] | |
resp_vote_btn_list: list[gr.component.Component] = [] | |
with gr.Column(): | |
with gr.Row(): | |
masked_model_names.append(gr.Markdown(visible=False, elem_classes=["model-name-text"])) | |
with gr.Row(): | |
chatbots.append(gr.Chatbot(label="Model A", elem_id="chatbot", height=400, elem_classes=None if COLOSSEUM_UP else ["greyed-out"])) | |
with gr.Row(): | |
left_resp_vote_btn = gr.Button(value="👈 Model A is better", interactive=False) | |
resp_vote_btn_list.append(left_resp_vote_btn) | |
with gr.Column(): | |
with gr.Row(): | |
masked_model_names.append(gr.Markdown(visible=False, elem_classes=["model-name-text"])) | |
with gr.Row(): | |
chatbots.append(gr.Chatbot(label="Model B", elem_id="chatbot", height=400, elem_classes=None if COLOSSEUM_UP else ["greyed-out"])) | |
with gr.Row(): | |
right_resp_vote_btn = gr.Button(value="👉 Model B is better", interactive=False) | |
resp_vote_btn_list.append(right_resp_vote_btn) | |
with gr.Row(): | |
energy_comparison_message = gr.HTML(visible=False) | |
with gr.Row(): | |
worth_energy_vote_btn = gr.Button(value="The better response was worth 👍 the extra energy.", visible=False) | |
notworth_energy_vote_btn = gr.Button(value="Not really worth that much more. 👎", visible=False) | |
energy_vote_btn_list: list[gr.component.Component] = [worth_energy_vote_btn, notworth_energy_vote_btn] | |
with gr.Row(): | |
play_again_btn = gr.Button("Play again!", visible=False, elem_classes=["btn-submit"]) | |
gr.Markdown(open("docs/colosseum_bottom.md").read()) | |
controller_client = gr.State() | |
(prompt_input | |
.submit(add_prompt_disable_submit, [prompt_input, *chatbots], [prompt_input, prompt_submit_btn, model_preference_dropdown, *chatbots, controller_client], queue=False) | |
.then(generate_responses, [controller_client, model_preference_dropdown, *chatbots], [*chatbots], queue=True, show_progress="hidden") | |
.then(enable_interact, None, resp_vote_btn_list, queue=False)) | |
(prompt_submit_btn | |
.click(add_prompt_disable_submit, [prompt_input, *chatbots], [prompt_input, prompt_submit_btn, model_preference_dropdown, *chatbots, controller_client], queue=False) | |
.then(generate_responses, [controller_client, model_preference_dropdown, *chatbots], [*chatbots], queue=True, show_progress="hidden") | |
.then(enable_interact, None, resp_vote_btn_list, queue=False)) | |
left_resp_vote_btn.click( | |
make_resp_vote_func(victory_index=0), | |
[controller_client], | |
[*resp_vote_btn_list, *masked_model_names, energy_comparison_message, *energy_vote_btn_list, play_again_btn], | |
queue=False, | |
) | |
right_resp_vote_btn.click( | |
make_resp_vote_func(victory_index=1), | |
[controller_client], | |
[*resp_vote_btn_list, *masked_model_names, energy_comparison_message, *energy_vote_btn_list, play_again_btn], | |
queue=False, | |
) | |
worth_energy_vote_btn.click( | |
make_energy_vote_func(is_worth=True), | |
[controller_client, energy_comparison_message], | |
[*masked_model_names, *energy_vote_btn_list, play_again_btn, energy_comparison_message], | |
queue=False, | |
) | |
notworth_energy_vote_btn.click( | |
make_energy_vote_func(is_worth=False), | |
[controller_client, energy_comparison_message], | |
[*masked_model_names, *energy_vote_btn_list, play_again_btn, energy_comparison_message], | |
queue=False, | |
) | |
(play_again_btn | |
.click( | |
play_again, | |
None, | |
[*chatbots, prompt_input, prompt_submit_btn, *masked_model_names, *energy_vote_btn_list, energy_comparison_message, model_preference_dropdown, play_again_btn], | |
queue=False, | |
) | |
.then(None, _js=focus_prompt_input_js, queue=False)) | |
# Tab: Leaderboard. | |
with gr.Tab("Leaderboard"): | |
with gr.Box(): | |
gr.HTML(intro_text) | |
# Block: Checkboxes to select benchmarking parameters. | |
with gr.Row(): | |
with gr.Box(): | |
gr.Markdown("### Benchmark results to show") | |
checkboxes: list[gr.CheckboxGroup] = [] | |
for key, choices in global_tbm.schema.items(): | |
# Specifying `value` makes everything checked by default. | |
checkboxes.append(gr.CheckboxGroup(choices=choices, value=choices[:1], label=key)) | |
# Block: Leaderboard table. | |
with gr.Row(): | |
dataframe = gr.Dataframe(type="pandas", elem_id="tab-leaderboard", interactive=False) | |
# Make sure the models have clickable links. | |
dataframe.change(None, None, None, _js=dataframe_update_js, queue=False) | |
# Table automatically updates when users check or uncheck any checkbox. | |
for checkbox in checkboxes: | |
checkbox.change(TableManager.set_filter_get_df, inputs=[tbm, *checkboxes], outputs=dataframe, queue=False) | |
# Block: Allow users to add new columns. | |
with gr.Box(): | |
gr.Markdown("### Add custom columns to the table") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
with gr.Row(): | |
colname_input = gr.Textbox(lines=1, label="Custom column name") | |
formula_input = gr.Textbox(lines=1, label="Formula (@sum, @len, @max, and @min are supported)") | |
with gr.Column(scale=1): | |
with gr.Row(): | |
add_col_btn = gr.Button("Add to table (⏎)", elem_classes=["btn-submit"]) | |
with gr.Row(): | |
clear_input_btn = gr.Button("Clear") | |
with gr.Row(): | |
add_col_message = gr.HTML("") | |
gr.Examples( | |
examples=[ | |
["power", "energy / latency"], | |
["token_per_joule", "response_length / energy"], | |
["verbose", "response_length > @sum(response_length) / @len(response_length)"], | |
], | |
inputs=[colname_input, formula_input], | |
) | |
colname_input.submit( | |
TableManager.add_column, | |
inputs=[tbm, colname_input, formula_input], | |
outputs=[dataframe, add_col_message], | |
queue=False, | |
) | |
formula_input.submit( | |
TableManager.add_column, | |
inputs=[tbm, colname_input, formula_input], | |
outputs=[dataframe, add_col_message], | |
queue=False, | |
) | |
add_col_btn.click( | |
TableManager.add_column, | |
inputs=[tbm, colname_input, formula_input], | |
outputs=[dataframe, add_col_message], | |
queue=False, | |
) | |
clear_input_btn.click( | |
lambda: (None, None, None), | |
inputs=None, | |
outputs=[colname_input, formula_input, add_col_message], | |
queue=False, | |
) | |
# Block: Allow users to plot 2D and 3D scatter plots. | |
with gr.Box(): | |
gr.Markdown("### Scatter plot (Hover over marker to show model name)") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
with gr.Row(): | |
# Initialize the dropdown choices with the global TableManager with just the original columns. | |
axis_dropdowns = global_tbm.get_dropdown() | |
with gr.Column(scale=1): | |
with gr.Row(): | |
plot_btn = gr.Button("Plot", elem_classes=["btn-submit"]) | |
with gr.Row(): | |
clear_plot_btn = gr.Button("Clear") | |
with gr.Accordion("Plot size (600 x 600 by default)", open=False): | |
with gr.Row(): | |
plot_width_input = gr.Textbox("600", lines=1, label="Width (px)") | |
plot_height_input = gr.Textbox("600", lines=1, label="Height (px)") | |
with gr.Row(): | |
plot = gr.Plot(value=global_tbm.plot_scatter( | |
plot_width_input.value, | |
plot_height_input.value, | |
x=axis_dropdowns[0].value, | |
y=axis_dropdowns[1].value, | |
z=axis_dropdowns[2].value, | |
)[0]) # type: ignore | |
with gr.Row(): | |
plot_message = gr.HTML("") | |
add_col_btn.click(TableManager.update_dropdown, inputs=tbm, outputs=axis_dropdowns, queue=False) # type: ignore | |
plot_width_input.submit( | |
TableManager.plot_scatter, | |
inputs=[tbm, plot_width_input, plot_height_input, *axis_dropdowns], | |
outputs=[plot, plot_width_input, plot_height_input, plot_message], | |
queue=False, | |
) | |
plot_height_input.submit( | |
TableManager.plot_scatter, | |
inputs=[tbm, plot_width_input, plot_height_input, *axis_dropdowns], | |
outputs=[plot, plot_width_input, plot_height_input, plot_message], | |
queue=False, | |
) | |
plot_btn.click( | |
TableManager.plot_scatter, | |
inputs=[tbm, plot_width_input, plot_height_input, *axis_dropdowns], | |
outputs=[plot, plot_width_input, plot_height_input, plot_message], | |
queue=False, | |
) | |
clear_plot_btn.click( | |
lambda: (None,) * 7, | |
None, | |
outputs=[*axis_dropdowns, plot, plot_width_input, plot_height_input, plot_message], | |
queue=False, | |
) | |
# Block: Leaderboard date. | |
with gr.Row(): | |
gr.HTML(f"<h3 style='color: gray'>Last updated: {current_date}</h3>") | |
# Tab: About page. | |
with gr.Tab("About"): | |
# Read in LEADERBOARD.md | |
gr.Markdown(open("docs/leaderboard.md").read()) | |
# Load the table on page load. | |
block.load(on_load, outputs=[dataframe, model_preference_dropdown], queue=False) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true", help="Specify if sharing is enabled") | |
parser.add_argument("--concurrency", type=int, default=50) | |
args = parser.parse_args() | |
block.queue(concurrency_count=args.concurrency, api_open=False).launch(share=args.share, show_error=True) | |