DogVision / app.py
Matej
Add examples
c2f2760
raw
history blame
1.31 kB
import gradio as gr
import tensorflow as tf
from huggingface_hub import from_pretrained_keras
from tensorflow.keras import mixed_precision
# Load your trained models
model = from_pretrained_keras("ml-debi/EfficientNetV2S-StanfordDogsA")
# Add information about the models
model_info = """
### Model Information
"""
examples = [["./examples/border_collie.jpg"], ["./examples/German-Shepherd.jpg"], ["./examples/staffordshire-bull-terrier-puppy.jpg"]]
def preprocess(image):
print("before resize", image.shape)
image = tf.image.resize(image, [224, 224])
image = tf.expand_dims(image, axis=0)
print("After expanddims", image.shape)
return image
def predict(image):
if mixed_precision.global_policy() == "mixed_float16":
mixed_precision.set_global_policy(policy="float32")
image = preprocess(image)
print(mixed_precision.global_policy())
prediction = model.predict(image)[0]
print("model prediction", prediction)
confidences = {model.config['id2label'][str(i)]: float(prediction[i]) for i in range(101)}
return confidences
iface = gr.Interface(
fn=predict,
inputs=[gr.Image()],
outputs=[gr.Label(num_top_classes=5)],
title="Dog Vision Mini Project",
description=f"{model_info}\n",
examples=examples
)
iface.launch()