Spaces:
Build error
Build error
""" | |
Notes | |
----- | |
This module contains the functions for audiobook_gen that read in the | |
file formats that require for parsing than plain text (pdf, html, epub), | |
as well as the preprocessing function for all input files. | |
""" | |
import re | |
from bs4 import BeautifulSoup | |
from nltk import tokenize, download | |
from textwrap import TextWrapper | |
from stqdm import stqdm | |
from src import config | |
download('punkt', quiet=True) | |
wrapper = TextWrapper(config.MAX_CHAR_LEN, fix_sentence_endings=True) | |
def preprocess_text(file): | |
""" | |
Preprocesses and tokenizes a section of text from the corpus: | |
1. Removes residual HTML tags | |
2. Handles un-supported characters | |
3. Tokenizes text and confirms max token size | |
Parameters | |
---------- | |
file : file_like | |
list of strings, | |
section of corpus to be pre-processed and tokenized | |
Returns | |
------- | |
text_list : : array_like | |
list of strings, | |
body of tokenized text from which audio is generated | |
""" | |
input_text = BeautifulSoup(file, "html.parser").text | |
text_list = [] | |
for paragraph in input_text.split('\n'): | |
paragraph = paragraph.replace('β', '-') | |
paragraph = paragraph.replace(' .', '') | |
paragraph = re.sub(r'[^\x00-\x7f]', "", paragraph) | |
paragraph = re.sub(r'x0f', " ", paragraph) | |
sentences = tokenize.sent_tokenize(paragraph) | |
sentence_list = [] | |
for sentence in sentences: | |
if any(chr.isdigit() for chr in sentence): | |
sentence = extract_replace(sentence) | |
sentence = replace_symbols(sentence) | |
if not re.search('[a-zA-Z]', sentence): | |
sentence = '' | |
wrapped_sentences = wrapper.wrap(sentence) | |
sentence_list.append(wrapped_sentences) | |
trunc_sentences = [phrase for sublist in sentence_list for phrase in sublist] | |
text_list.append(trunc_sentences) | |
text_list = [text for sentences in text_list for text in sentences] | |
return text_list | |
def extract_replace(entry_string): | |
import inflect | |
result = (entry_string + '.')[:-1] | |
p = inflect.engine() | |
i = 0 | |
#initialize array with three random numbers to enter the loop, then find if there are numbers or not. | |
array = [3 , 2 , 3] | |
#take every number from the entry string, locate and store the number in digits in a sentence (using find_num_index), apply number_to_words | |
#to that number specifically then replace it back in the sentence. | |
while(len(array) > 2): | |
#update array with first and last indexes of every number in digits in a sentence | |
array = find_num_index(result) | |
number = result[array[i] : array[i+1] + 1] | |
k = p.number_to_words(number) | |
position = array[i] | |
number_of_characters = array[i+1] - array[i] + 1 | |
#update sentence with the new word to numbers until there are no numbers in digits left | |
result = result[:position] + k + result[position + number_of_characters:] | |
return result | |
def find_num_index(entry_string): | |
result0 = [] | |
#fill result0 array with all the indexes of digit characters in a sentence | |
for i in range(len(entry_string)): | |
if (entry_string[i].isdigit() == True): | |
result0.append(i) | |
result1 = [] | |
try: | |
result1.append(result0[0]) | |
except IndexError: | |
result0 = 'null' | |
if(result0 != 'null'): | |
# append only indexes of first and last characters of numbers to result1 array | |
for k in range(len(result0) - 1): | |
if ((result0[k+1] - result0[k]) > 2): | |
result1.append(result0[k]) | |
result1.append(result0[k+1]) | |
try: | |
result1.append(result0[len(result0) - 1]) | |
except IndexError: | |
result1 = 'null' | |
# return array of even length that contains first and last index of every number in a sentence | |
return result1 | |
def replace_symbols(text): | |
import re | |
symbol_map = { | |
'+': ' plus ', | |
'-': ' minus ', | |
'β': ' dash ', | |
'=': ' equals ', | |
'β': ' approximately equal to ', | |
'*': ' times ', | |
'x': ' times ', | |
'%': ' percent ', | |
'/': ' divided by ', | |
'#': ' number ', | |
'@': ' at ', | |
'&': ' ampersand ', | |
'Β°': ' degrees ' | |
} | |
symbol_regex = re.compile('|'.join(re.escape(key) for key in symbol_map.keys())) | |
text = symbol_regex.sub(lambda x: symbol_map[x.group()], text) | |
return text | |
def read_pdf(file): | |
""" | |
Invokes PyPDF2 PdfReader to extract main body text from PDF file_like input, | |
and preprocesses text section by section. | |
Parameters | |
---------- | |
file : file_like | |
PDF file input to be parsed and preprocessed | |
Returns | |
------- | |
corpus : array_like | |
list of list of strings, | |
body of tokenized text from which audio is generated | |
""" | |
from PyPDF2 import PdfReader | |
reader = PdfReader(file) | |
corpus = [] | |
for item in stqdm(list(reader.pages), desc="Pages in pdf:"): | |
text_list = preprocess_text(item.extract_text()) | |
corpus.append(text_list) | |
return corpus | |
def read_epub(file): | |
""" | |
Invokes ebooklib read_epub to extract main body text from epub file_like input, | |
and preprocesses text section by section. | |
Parameters | |
---------- | |
file : file_like | |
EPUB file input to be parsed and preprocessed | |
Returns | |
------- | |
corpus : array_like | |
list of list of strings, | |
body of tokenized text from which audio is generated | |
file_title : str | |
title of document, used to name output files | |
""" | |
import ebooklib | |
from ebooklib import epub | |
book = epub.read_epub(file) | |
file_title = book.get_metadata('DC', 'title')[0][0] | |
file_title = file_title.lower().replace(' ', '_') | |
corpus = [] | |
for item in stqdm(list(book.get_items()), desc="Chapters in ebook:"): | |
if item.get_type() == ebooklib.ITEM_DOCUMENT: | |
text_list = preprocess_text(item.get_content()) | |
corpus.append(text_list) | |
return corpus, file_title | |