|
import numpy as np |
|
from PIL import Image |
|
import matplotlib.pyplot as plt |
|
import cv2 |
|
import torch |
|
|
|
|
|
def fast_process( |
|
annotations, |
|
image, |
|
device, |
|
scale, |
|
better_quality=False, |
|
mask_random_color=True, |
|
bbox=None, |
|
use_retina=True, |
|
withContours=True, |
|
): |
|
if isinstance(annotations[0], dict): |
|
annotations = [annotation['segmentation'] for annotation in annotations] |
|
|
|
original_h = image.height |
|
original_w = image.width |
|
if better_quality: |
|
if isinstance(annotations[0], torch.Tensor): |
|
annotations = np.array(annotations.cpu()) |
|
for i, mask in enumerate(annotations): |
|
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) |
|
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) |
|
if device == 'cpu': |
|
annotations = np.array(annotations) |
|
inner_mask = fast_show_mask( |
|
annotations, |
|
plt.gca(), |
|
random_color=mask_random_color, |
|
bbox=bbox, |
|
retinamask=use_retina, |
|
target_height=original_h, |
|
target_width=original_w, |
|
) |
|
else: |
|
if isinstance(annotations[0], np.ndarray): |
|
annotations = torch.from_numpy(annotations) |
|
inner_mask = fast_show_mask_gpu( |
|
annotations, |
|
plt.gca(), |
|
random_color=mask_random_color, |
|
bbox=bbox, |
|
retinamask=use_retina, |
|
target_height=original_h, |
|
target_width=original_w, |
|
) |
|
if isinstance(annotations, torch.Tensor): |
|
annotations = annotations.cpu().numpy() |
|
|
|
if withContours: |
|
contour_all = [] |
|
temp = np.zeros((original_h, original_w, 1)) |
|
for i, mask in enumerate(annotations): |
|
if type(mask) == dict: |
|
mask = mask['segmentation'] |
|
annotation = mask.astype(np.uint8) |
|
if use_retina == False: |
|
annotation = cv2.resize( |
|
annotation, |
|
(original_w, original_h), |
|
interpolation=cv2.INTER_NEAREST, |
|
) |
|
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) |
|
for contour in contours: |
|
contour_all.append(contour) |
|
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale) |
|
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9]) |
|
contour_mask = temp / 255 * color.reshape(1, 1, -1) |
|
|
|
image = image.convert('RGBA') |
|
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA') |
|
image.paste(overlay_inner, (0, 0), overlay_inner) |
|
|
|
if withContours: |
|
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA') |
|
image.paste(overlay_contour, (0, 0), overlay_contour) |
|
|
|
return image |
|
|
|
|
|
|
|
def fast_show_mask( |
|
annotation, |
|
ax, |
|
random_color=False, |
|
bbox=None, |
|
retinamask=True, |
|
target_height=960, |
|
target_width=960, |
|
): |
|
mask_sum = annotation.shape[0] |
|
height = annotation.shape[1] |
|
weight = annotation.shape[2] |
|
|
|
areas = np.sum(annotation, axis=(1, 2)) |
|
sorted_indices = np.argsort(areas)[::1] |
|
annotation = annotation[sorted_indices] |
|
|
|
index = (annotation != 0).argmax(axis=0) |
|
if random_color: |
|
color = np.random.random((mask_sum, 1, 1, 3)) |
|
else: |
|
color = np.ones((mask_sum, 1, 1, 3)) * np.array([30 / 255, 144 / 255, 255 / 255]) |
|
transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6 |
|
visual = np.concatenate([color, transparency], axis=-1) |
|
mask_image = np.expand_dims(annotation, -1) * visual |
|
|
|
mask = np.zeros((height, weight, 4)) |
|
|
|
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij') |
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) |
|
|
|
mask[h_indices, w_indices, :] = mask_image[indices] |
|
if bbox is not None: |
|
x1, y1, x2, y2 = bbox |
|
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) |
|
|
|
if not retinamask: |
|
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST) |
|
|
|
return mask |
|
|
|
|
|
def fast_show_mask_gpu( |
|
annotation, |
|
ax, |
|
random_color=False, |
|
bbox=None, |
|
retinamask=True, |
|
target_height=960, |
|
target_width=960, |
|
): |
|
device = annotation.device |
|
mask_sum = annotation.shape[0] |
|
height = annotation.shape[1] |
|
weight = annotation.shape[2] |
|
areas = torch.sum(annotation, dim=(1, 2)) |
|
sorted_indices = torch.argsort(areas, descending=False) |
|
annotation = annotation[sorted_indices] |
|
|
|
index = (annotation != 0).to(torch.long).argmax(dim=0) |
|
if random_color: |
|
color = torch.rand((mask_sum, 1, 1, 3)).to(device) |
|
else: |
|
color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor( |
|
[30 / 255, 144 / 255, 255 / 255] |
|
).to(device) |
|
transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6 |
|
visual = torch.cat([color, transparency], dim=-1) |
|
mask_image = torch.unsqueeze(annotation, -1) * visual |
|
|
|
mask = torch.zeros((height, weight, 4)).to(device) |
|
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight)) |
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) |
|
|
|
mask[h_indices, w_indices, :] = mask_image[indices] |
|
mask_cpu = mask.cpu().numpy() |
|
if bbox is not None: |
|
x1, y1, x2, y2 = bbox |
|
ax.add_patch( |
|
plt.Rectangle( |
|
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1 |
|
) |
|
) |
|
if not retinamask: |
|
mask_cpu = cv2.resize( |
|
mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST |
|
) |
|
return mask_cpu |
|
|