|
import numpy as np |
|
from PIL import Image |
|
import matplotlib.pyplot as plt |
|
import cv2 |
|
import torch |
|
import os |
|
import sys |
|
import clip |
|
|
|
|
|
def convert_box_xywh_to_xyxy(box): |
|
if len(box) == 4: |
|
return [box[0], box[1], box[0] + box[2], box[1] + box[3]] |
|
else: |
|
result = [] |
|
for b in box: |
|
b = convert_box_xywh_to_xyxy(b) |
|
result.append(b) |
|
return result |
|
|
|
|
|
def segment_image(image, bbox): |
|
image_array = np.array(image) |
|
segmented_image_array = np.zeros_like(image_array) |
|
x1, y1, x2, y2 = bbox |
|
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2] |
|
segmented_image = Image.fromarray(segmented_image_array) |
|
black_image = Image.new("RGB", image.size, (255, 255, 255)) |
|
|
|
transparency_mask = np.zeros( |
|
(image_array.shape[0], image_array.shape[1]), dtype=np.uint8 |
|
) |
|
transparency_mask[y1:y2, x1:x2] = 255 |
|
transparency_mask_image = Image.fromarray(transparency_mask, mode="L") |
|
black_image.paste(segmented_image, mask=transparency_mask_image) |
|
return black_image |
|
|
|
|
|
def format_results(result, filter=0): |
|
annotations = [] |
|
n = len(result.masks.data) |
|
for i in range(n): |
|
annotation = {} |
|
mask = result.masks.data[i] == 1.0 |
|
|
|
if torch.sum(mask) < filter: |
|
continue |
|
annotation["id"] = i |
|
annotation["segmentation"] = mask.cpu().numpy() |
|
annotation["bbox"] = result.boxes.data[i] |
|
annotation["score"] = result.boxes.conf[i] |
|
annotation["area"] = annotation["segmentation"].sum() |
|
annotations.append(annotation) |
|
return annotations |
|
|
|
|
|
def filter_masks(annotations): |
|
annotations.sort(key=lambda x: x["area"], reverse=True) |
|
to_remove = set() |
|
for i in range(0, len(annotations)): |
|
a = annotations[i] |
|
for j in range(i + 1, len(annotations)): |
|
b = annotations[j] |
|
if i != j and j not in to_remove: |
|
|
|
if b["area"] < a["area"]: |
|
if (a["segmentation"] & b["segmentation"]).sum() / b[ |
|
"segmentation" |
|
].sum() > 0.8: |
|
to_remove.add(j) |
|
|
|
return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove |
|
|
|
|
|
def get_bbox_from_mask(mask): |
|
mask = mask.astype(np.uint8) |
|
contours, hierarchy = cv2.findContours( |
|
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE |
|
) |
|
x1, y1, w, h = cv2.boundingRect(contours[0]) |
|
x2, y2 = x1 + w, y1 + h |
|
if len(contours) > 1: |
|
for b in contours: |
|
x_t, y_t, w_t, h_t = cv2.boundingRect(b) |
|
|
|
x1 = min(x1, x_t) |
|
y1 = min(y1, y_t) |
|
x2 = max(x2, x_t + w_t) |
|
y2 = max(y2, y_t + h_t) |
|
h = y2 - y1 |
|
w = x2 - x1 |
|
return [x1, y1, x2, y2] |
|
|
|
|
|
def fast_process( |
|
annotations, args, mask_random_color, bbox=None, points=None, edges=False |
|
): |
|
if isinstance(annotations[0], dict): |
|
annotations = [annotation["segmentation"] for annotation in annotations] |
|
result_name = os.path.basename(args.img_path) |
|
image = cv2.imread(args.img_path) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
original_h = image.shape[0] |
|
original_w = image.shape[1] |
|
if sys.platform == "darwin": |
|
plt.switch_backend("TkAgg") |
|
plt.figure(figsize=(original_w/100, original_h/100)) |
|
|
|
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) |
|
plt.margins(0, 0) |
|
plt.gca().xaxis.set_major_locator(plt.NullLocator()) |
|
plt.gca().yaxis.set_major_locator(plt.NullLocator()) |
|
plt.imshow(image) |
|
if args.better_quality == True: |
|
if isinstance(annotations[0], torch.Tensor): |
|
annotations = np.array(annotations.cpu()) |
|
for i, mask in enumerate(annotations): |
|
mask = cv2.morphologyEx( |
|
mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8) |
|
) |
|
annotations[i] = cv2.morphologyEx( |
|
mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8) |
|
) |
|
if args.device == "cpu": |
|
annotations = np.array(annotations) |
|
fast_show_mask( |
|
annotations, |
|
plt.gca(), |
|
random_color=mask_random_color, |
|
bbox=bbox, |
|
points=points, |
|
point_label=args.point_label, |
|
retinamask=args.retina, |
|
target_height=original_h, |
|
target_width=original_w, |
|
) |
|
else: |
|
if isinstance(annotations[0], np.ndarray): |
|
annotations = torch.from_numpy(annotations) |
|
fast_show_mask_gpu( |
|
annotations, |
|
plt.gca(), |
|
random_color=args.randomcolor, |
|
bbox=bbox, |
|
points=points, |
|
point_label=args.point_label, |
|
retinamask=args.retina, |
|
target_height=original_h, |
|
target_width=original_w, |
|
) |
|
if isinstance(annotations, torch.Tensor): |
|
annotations = annotations.cpu().numpy() |
|
if args.withContours == True: |
|
contour_all = [] |
|
temp = np.zeros((original_h, original_w, 1)) |
|
for i, mask in enumerate(annotations): |
|
if type(mask) == dict: |
|
mask = mask["segmentation"] |
|
annotation = mask.astype(np.uint8) |
|
if args.retina == False: |
|
annotation = cv2.resize( |
|
annotation, |
|
(original_w, original_h), |
|
interpolation=cv2.INTER_NEAREST, |
|
) |
|
contours, hierarchy = cv2.findContours( |
|
annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE |
|
) |
|
for contour in contours: |
|
contour_all.append(contour) |
|
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2) |
|
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8]) |
|
contour_mask = temp / 255 * color.reshape(1, 1, -1) |
|
plt.imshow(contour_mask) |
|
|
|
save_path = args.output |
|
if not os.path.exists(save_path): |
|
os.makedirs(save_path) |
|
plt.axis("off") |
|
fig = plt.gcf() |
|
plt.draw() |
|
|
|
try: |
|
buf = fig.canvas.tostring_rgb() |
|
except AttributeError: |
|
fig.canvas.draw() |
|
buf = fig.canvas.tostring_rgb() |
|
|
|
cols, rows = fig.canvas.get_width_height() |
|
img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3) |
|
cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)) |
|
|
|
|
|
|
|
def fast_show_mask( |
|
annotation, |
|
ax, |
|
random_color=False, |
|
bbox=None, |
|
points=None, |
|
point_label=None, |
|
retinamask=True, |
|
target_height=960, |
|
target_width=960, |
|
): |
|
msak_sum = annotation.shape[0] |
|
height = annotation.shape[1] |
|
weight = annotation.shape[2] |
|
|
|
areas = np.sum(annotation, axis=(1, 2)) |
|
sorted_indices = np.argsort(areas) |
|
annotation = annotation[sorted_indices] |
|
|
|
index = (annotation != 0).argmax(axis=0) |
|
if random_color == True: |
|
color = np.random.random((msak_sum, 1, 1, 3)) |
|
else: |
|
color = np.ones((msak_sum, 1, 1, 3)) * np.array( |
|
[30 / 255, 144 / 255, 255 / 255] |
|
) |
|
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6 |
|
visual = np.concatenate([color, transparency], axis=-1) |
|
mask_image = np.expand_dims(annotation, -1) * visual |
|
|
|
show = np.zeros((height, weight, 4)) |
|
h_indices, w_indices = np.meshgrid( |
|
np.arange(height), np.arange(weight), indexing="ij" |
|
) |
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) |
|
|
|
show[h_indices, w_indices, :] = mask_image[indices] |
|
if bbox is not None: |
|
x1, y1, x2, y2 = bbox |
|
ax.add_patch( |
|
plt.Rectangle( |
|
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1 |
|
) |
|
) |
|
|
|
if points is not None: |
|
plt.scatter( |
|
[point[0] for i, point in enumerate(points) if point_label[i] == 1], |
|
[point[1] for i, point in enumerate(points) if point_label[i] == 1], |
|
s=20, |
|
c="y", |
|
) |
|
plt.scatter( |
|
[point[0] for i, point in enumerate(points) if point_label[i] == 0], |
|
[point[1] for i, point in enumerate(points) if point_label[i] == 0], |
|
s=20, |
|
c="m", |
|
) |
|
|
|
if retinamask == False: |
|
show = cv2.resize( |
|
show, (target_width, target_height), interpolation=cv2.INTER_NEAREST |
|
) |
|
ax.imshow(show) |
|
|
|
|
|
def fast_show_mask_gpu( |
|
annotation, |
|
ax, |
|
random_color=False, |
|
bbox=None, |
|
points=None, |
|
point_label=None, |
|
retinamask=True, |
|
target_height=960, |
|
target_width=960, |
|
): |
|
msak_sum = annotation.shape[0] |
|
height = annotation.shape[1] |
|
weight = annotation.shape[2] |
|
areas = torch.sum(annotation, dim=(1, 2)) |
|
sorted_indices = torch.argsort(areas, descending=False) |
|
annotation = annotation[sorted_indices] |
|
|
|
index = (annotation != 0).to(torch.long).argmax(dim=0) |
|
if random_color == True: |
|
color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device) |
|
else: |
|
color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor( |
|
[30 / 255, 144 / 255, 255 / 255] |
|
).to(annotation.device) |
|
transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6 |
|
visual = torch.cat([color, transparency], dim=-1) |
|
mask_image = torch.unsqueeze(annotation, -1) * visual |
|
|
|
show = torch.zeros((height, weight, 4)).to(annotation.device) |
|
h_indices, w_indices = torch.meshgrid( |
|
torch.arange(height), torch.arange(weight), indexing="ij" |
|
) |
|
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) |
|
|
|
show[h_indices, w_indices, :] = mask_image[indices] |
|
show_cpu = show.cpu().numpy() |
|
if bbox is not None: |
|
x1, y1, x2, y2 = bbox |
|
ax.add_patch( |
|
plt.Rectangle( |
|
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1 |
|
) |
|
) |
|
|
|
if points is not None: |
|
plt.scatter( |
|
[point[0] for i, point in enumerate(points) if point_label[i] == 1], |
|
[point[1] for i, point in enumerate(points) if point_label[i] == 1], |
|
s=20, |
|
c="y", |
|
) |
|
plt.scatter( |
|
[point[0] for i, point in enumerate(points) if point_label[i] == 0], |
|
[point[1] for i, point in enumerate(points) if point_label[i] == 0], |
|
s=20, |
|
c="m", |
|
) |
|
if retinamask == False: |
|
show_cpu = cv2.resize( |
|
show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST |
|
) |
|
ax.imshow(show_cpu) |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def retriev( |
|
model, preprocess, elements: [Image.Image], search_text: str, device |
|
): |
|
preprocessed_images = [preprocess(image).to(device) for image in elements] |
|
tokenized_text = clip.tokenize([search_text]).to(device) |
|
stacked_images = torch.stack(preprocessed_images) |
|
image_features = model.encode_image(stacked_images) |
|
text_features = model.encode_text(tokenized_text) |
|
image_features /= image_features.norm(dim=-1, keepdim=True) |
|
text_features /= text_features.norm(dim=-1, keepdim=True) |
|
probs = 100.0 * image_features @ text_features.T |
|
return probs[:, 0].softmax(dim=0) |
|
|
|
|
|
def crop_image(annotations, image_like): |
|
if isinstance(image_like, str): |
|
image = Image.open(image_like) |
|
else: |
|
image = image_like |
|
ori_w, ori_h = image.size |
|
mask_h, mask_w = annotations[0]["segmentation"].shape |
|
if ori_w != mask_w or ori_h != mask_h: |
|
image = image.resize((mask_w, mask_h)) |
|
cropped_boxes = [] |
|
cropped_images = [] |
|
not_crop = [] |
|
origin_id = [] |
|
for _, mask in enumerate(annotations): |
|
if np.sum(mask["segmentation"]) <= 100: |
|
continue |
|
origin_id.append(_) |
|
bbox = get_bbox_from_mask(mask["segmentation"]) |
|
cropped_boxes.append(segment_image(image, bbox)) |
|
|
|
cropped_images.append(bbox) |
|
return cropped_boxes, cropped_images, not_crop, origin_id, annotations |
|
|
|
|
|
def box_prompt(masks, bbox, target_height, target_width): |
|
h = masks.shape[1] |
|
w = masks.shape[2] |
|
if h != target_height or w != target_width: |
|
bbox = [ |
|
int(bbox[0] * w / target_width), |
|
int(bbox[1] * h / target_height), |
|
int(bbox[2] * w / target_width), |
|
int(bbox[3] * h / target_height), |
|
] |
|
bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0 |
|
bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0 |
|
bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w |
|
bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h |
|
|
|
|
|
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0]) |
|
|
|
masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2)) |
|
orig_masks_area = torch.sum(masks, dim=(1, 2)) |
|
|
|
union = bbox_area + orig_masks_area - masks_area |
|
IoUs = masks_area / union |
|
max_iou_index = torch.argmax(IoUs) |
|
|
|
return masks[max_iou_index].cpu().numpy(), max_iou_index |
|
|
|
|
|
def point_prompt(masks, points, point_label, target_height, target_width): |
|
h = masks[0]["segmentation"].shape[0] |
|
w = masks[0]["segmentation"].shape[1] |
|
if h != target_height or w != target_width: |
|
points = [ |
|
[int(point[0] * w / target_width), int(point[1] * h / target_height)] |
|
for point in points |
|
] |
|
onemask = np.zeros((h, w)) |
|
masks = sorted(masks, key=lambda x: x['area'], reverse=True) |
|
for i, annotation in enumerate(masks): |
|
if type(annotation) == dict: |
|
mask = annotation['segmentation'] |
|
else: |
|
mask = annotation |
|
for i, point in enumerate(points): |
|
if mask[point[1], point[0]] == 1 and point_label[i] == 1: |
|
onemask[mask] = 1 |
|
if mask[point[1], point[0]] == 1 and point_label[i] == 0: |
|
onemask[mask] = 0 |
|
onemask = onemask >= 1 |
|
return onemask, 0 |
|
|
|
|
|
def text_prompt(annotations, text, img_path, device, wider=False, threshold=0.9): |
|
cropped_boxes, cropped_images, not_crop, origin_id, annotations_ = crop_image( |
|
annotations, img_path |
|
) |
|
clip_model, preprocess = clip.load("./weights/CLIP_ViT_B_32.pt", device=device) |
|
scores = retriev( |
|
clip_model, preprocess, cropped_boxes, text, device=device |
|
) |
|
max_idx = scores.argsort() |
|
max_idx = max_idx[-1] |
|
max_idx = origin_id[int(max_idx)] |
|
|
|
|
|
if wider: |
|
mask0 = annotations_[max_idx]["segmentation"] |
|
area0 = np.sum(mask0) |
|
areas = [(i, np.sum(mask["segmentation"])) for i, mask in enumerate(annotations_) if i in origin_id] |
|
areas = sorted(areas, key=lambda area: area[1], reverse=True) |
|
indices = [area[0] for area in areas] |
|
for index in indices: |
|
if index == max_idx or np.sum(annotations_[index]["segmentation"] & mask0) / area0 > threshold: |
|
max_idx = index |
|
break |
|
|
|
return annotations_[max_idx]["segmentation"], max_idx |
|
|