Spaces:
Sleeping
Sleeping
import torch | |
import torch.optim as optim | |
import lightning.pytorch as pl | |
from torchvision import transforms | |
from custom_library.utils import cells_to_bboxes, non_max_suppression | |
from custom_library import config | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
from custom_library.lightning_model import YOLOv3Lightning | |
import cv2 | |
import numpy as np | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
from custom_library.gradio_utils import draw_predictions, YoloCAM | |
import gradio as gr | |
import os | |
import albumentations as A | |
from albumentations.pytorch import ToTensorV2 | |
model = YOLOv3Lightning(config=config) | |
model.load_state_dict(torch.load("custom_yolo_model.pth", map_location=torch.device('cpu')), strict=False) | |
model.setup(stage="test") | |
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] | |
scaled_anchors = (torch.tensor(config.ANCHORS)* torch.tensor(config.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)).to(config.DEVICE) | |
transforms = A.Compose( | |
[ | |
A.LongestMaxSize(max_size=config.IMAGE_SIZE), | |
A.PadIfNeeded( | |
min_height=config.IMAGE_SIZE, min_width=config.IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT | |
), | |
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,), | |
ToTensorV2(), | |
], | |
) | |
def model_inference(image, iou_threshold=0.5, threshold=0.4, show_cam="No", transparency=0.5, target_layer=-2): | |
# Transforming image | |
transformed_image = transforms(image=image)["image"].unsqueeze(0) | |
output = model(transformed_image) | |
# Selecting layer for gradCAM | |
if target_layer == -2: | |
layer = [model.model.layers[-3]] | |
else: | |
layer = [model.model.layers[-2]] | |
cam = YoloCAM(model=model, target_layers=layer, use_cuda=False) | |
bboxes = [[] for _ in range(1)] | |
for i in range(3): | |
batch_size, A, S, _, _ = output[i].shape | |
anchor = scaled_anchors[i] | |
boxes_scale_i = cells_to_bboxes(output[i], anchor, S=S, is_preds=True) | |
for idx, (box) in enumerate(boxes_scale_i): | |
bboxes[idx] += box | |
nms_boxes = non_max_suppression(bboxes[0], iou_threshold=iou_threshold, threshold=threshold, box_format="midpoint") | |
plot_img = draw_predictions(image.copy(), nms_boxes, class_labels=config.PASCAL_CLASSES) | |
if show_cam == "No": | |
return [plot_img] | |
else: | |
grayscale_cam = cam(transformed_image, scaled_anchors)[0, :, :] | |
img = cv2.resize(image, (416, 416)) | |
img = np.float32(img) / 255 | |
cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True, image_weight=transparency) | |
return [plot_img, cam_image] | |
title = "Custom YOLOv3" | |
description = "Pytorch Lightning implemetation of YOLOv3 on Pascal VOC dataset.\ | |
Supported classes are aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, and TV/monitor." | |
examples = [["examples/example1.jpg"], | |
["examples/example2.jpg"], | |
["examples/example3.jpg"], | |
["examples/example4.jpg"], | |
["examples/example5.jpg"], | |
["examples/example6.jpg"], | |
["examples/example7.jpg"], | |
["examples/example8.jpg"]] | |
demo = gr.Interface(model_inference, inputs=[gr.Image(label="Input an image"), | |
gr.Slider(0, 1, value=0.5, label="IOU Threshold"), | |
gr.Slider(0, 1, value=0.4, label="Threshold"), | |
gr.Radio(["Yes", "No"], value="No" , label="Show GradCAM outputs"), | |
gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"), | |
gr.Slider(-2, -1, value=-1, step=1, label="Which Layer?")], | |
outputs=[gr.Gallery(label="Model Outputs", rows=2, columns=1, object_fit="contain", height="auto")], | |
title=title, description=description, examples=examples) | |
demo.launch() | |