Spaces:
Sleeping
Sleeping
import lightning.pytorch as pl | |
from . import config | |
from .utils import (check_class_accuracy,get_evaluation_bboxes,mean_average_precision,plot_couple_examples) | |
from lightning.pytorch.callbacks import Callback | |
class plot_examples_callback(Callback): | |
def __init__(self, epoch_interval: int = 5) -> None: | |
super().__init__() | |
self.epoch_interval = epoch_interval | |
def on_train_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule) -> None: | |
if (trainer.current_epoch + 1) % self.epoch_interval == 0: | |
plot_couple_examples( | |
model=pl_module, | |
loader=pl_module.train_dataloader(), | |
thresh=0.6, | |
iou_thresh=0.5, | |
anchors=pl_module.scaled_anchors, | |
) | |
class class_accuracy_callback(pl.Callback): | |
def __init__(self, train_epoch_interval: int = 1, test_epoch_interval: int = 10) -> None: | |
super().__init__() | |
self.train_epoch_interval = train_epoch_interval | |
self.test_epoch_interval = test_epoch_interval | |
def on_train_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule) -> None: | |
if (trainer.current_epoch + 1) % self.train_epoch_interval == 0: | |
class_acc, no_obj_acc, obj_acc = check_class_accuracy(model=pl_module, loader=pl_module.train_dataloader(), threshold=config.CONF_THRESHOLD) | |
class_acc = round(class_acc.item(),2) | |
no_obj_acc = round(no_obj_acc.item(),2) | |
obj_acc = round(obj_acc.item(),2) | |
pl_module.log_dict( | |
{ | |
"train_class_acc": class_acc, | |
"train_no_obj_acc": no_obj_acc, | |
"train_obj_acc": obj_acc, | |
}, | |
logger=True, | |
) | |
print(f"Epoch: {trainer.current_epoch + 1}") | |
print("Train Metrics") | |
print(f"Loss: {trainer.callback_metrics['train_loss_epoch']}") | |
print(f"Class Accuracy: {class_acc:2f}%") | |
print(f"No Object Accuracy: {no_obj_acc:2f}%") | |
print(f"Object Accuracy: {obj_acc:2f}%") | |
if (trainer.current_epoch + 1) % self.test_epoch_interval == 0: | |
class_acc, no_obj_acc, obj_acc = check_class_accuracy(model=pl_module, loader=pl_module.test_dataloader(), threshold=config.CONF_THRESHOLD) | |
class_acc = round(class_acc.item(),2) | |
no_obj_acc = round(no_obj_acc.item(),2) | |
obj_acc = round(obj_acc.item(),2) | |
pl_module.log_dict( | |
{ | |
"test_class_acc": class_acc, | |
"test_no_obj_acc": no_obj_acc, | |
"test_obj_acc": obj_acc, | |
}, | |
logger=True, | |
) | |
print("Test Metrics") | |
print(f"Class Accuracy: {class_acc:2f}%") | |
print(f"No Object Accuracy: {no_obj_acc:2f}%") | |
print(f"Object Accuracy: {obj_acc:2f}%") | |
class map_callback(pl.Callback): | |
def __init__(self, epoch_interval: int = 10) -> None: | |
super().__init__() | |
self.epoch_interval = epoch_interval | |
def on_train_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule) -> None: | |
if (trainer.current_epoch + 1) % self.epoch_interval == 0: | |
pred_boxes, true_boxes = get_evaluation_bboxes(loader=pl_module.test_dataloader(), model=pl_module, iou_threshold=config.NMS_IOU_THRESH, anchors=config.ANCHORS, threshold=config.CONF_THRESHOLD, device=config.DEVICE,) | |
map_val = mean_average_precision(pred_boxes=pred_boxes, true_boxes=true_boxes, iou_threshold=config.MAP_IOU_THRESH, box_format="midpoint", num_classes=config.NUM_CLASSES) | |
print("MAP: ", map_val.item()) | |
pl_module.log("MAP",map_val.item(),logger=True) | |
pl_module.train() |