Spaces:
Sleeping
Sleeping
# Copyright Niantic 2019. Patent Pending. All rights reserved. | |
# | |
# This software is licensed under the terms of the Monodepth2 licence | |
# which allows for non-commercial use only, the full terms of which are made | |
# available in the LICENSE file. | |
from __future__ import absolute_import, division, print_function | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from collections import OrderedDict | |
from layers import * | |
class DepthDecoder(nn.Module): | |
def __init__(self, num_ch_enc, scales=range(4), num_output_channels=1, use_skips=True, batch_norm = True): | |
super(DepthDecoder, self).__init__() | |
self.num_output_channels = num_output_channels | |
self.use_skips = use_skips | |
self.upsample_mode = 'nearest' | |
self.scales = scales | |
self.batch_norm = batch_norm | |
self.num_ch_enc = num_ch_enc | |
self.num_ch_dec = np.array([16, 32, 64, 128, 256]) | |
self.convs = OrderedDict() | |
self.bn = {} | |
for i in range(4, -1, -1): | |
self.convs[("deconv", i, 0)] = nn.ConvTranspose2d(self.num_ch_dec[i], self.num_ch_dec[i], 3, stride=2, padding = 1, output_padding = 1) | |
if self.batch_norm: | |
self.bn[('bn', i)] = batchNorm(self.num_ch_dec[i]) | |
# decoder | |
for i in range(4, -1, -1): | |
# upconv_0 | |
num_ch_in = self.num_ch_enc[-1] if i == 4 else self.num_ch_dec[i + 1] | |
num_ch_out = self.num_ch_dec[i] | |
self.convs[("upconv", i, 0)] = ConvBlock(num_ch_in, num_ch_out) | |
# upconv_1 | |
num_ch_in = self.num_ch_dec[i] | |
if self.use_skips and i > 0: | |
num_ch_in += self.num_ch_enc[i - 1] | |
num_ch_out = self.num_ch_dec[i] | |
self.convs[("upconv", i, 1)] = ConvBlock(num_ch_in, num_ch_out) | |
for s in self.scales: | |
self.convs[("dispconv", s)] = Conv3x3(self.num_ch_dec[s], self.num_output_channels) | |
self.decoder = nn.ModuleList(list(self.convs.values())) | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, input_features): | |
self.outputs = {} | |
# decoder | |
x = input_features[-1] | |
for i in range(4, -1, -1): | |
x = self.convs[("upconv", i, 0)](x) | |
x = [upsample(x)] | |
# x = [self.convs[("deconv", i, 0)](x)] | |
if self.use_skips and i > 0: | |
x += [input_features[i - 1]] | |
x = torch.cat(x, 1) | |
x = self.convs[("upconv", i, 1)](x) | |
if self.batch_norm: | |
x = self.bn[('bn', i)].cuda()(x) | |
# batchnorm | |
if i in self.scales: | |
self.outputs[("disp", i)] = self.sigmoid(self.convs[("dispconv", i)](x)) | |
return self.outputs | |