Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.prompts import ChatPromptTemplate
|
2 |
+
from langchain_core.output_parsers import StrOutputParser
|
3 |
+
from langchain_groq import ChatGroq
|
4 |
+
|
5 |
+
import streamlit as st
|
6 |
+
import os
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
12 |
+
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
|
13 |
+
os.environ["LANGCHAIN_TRACING_V2"] = "true"
|
14 |
+
os.environ["LANGCHAIN_PROJECT"] = "sarcastic_bot"
|
15 |
+
|
16 |
+
# build a LLM chain
|
17 |
+
promptTemplate = ChatPromptTemplate.from_messages(
|
18 |
+
[
|
19 |
+
("system", "Reply with {way} to all the questions"),
|
20 |
+
("user", "Question:{question}"),
|
21 |
+
]
|
22 |
+
)
|
23 |
+
|
24 |
+
model = ChatGroq(model="mixtral-8x7b-32768")
|
25 |
+
parser = StrOutputParser()
|
26 |
+
|
27 |
+
chain = promptTemplate|model|parser
|
28 |
+
|
29 |
+
#create streamlit
|
30 |
+
st.title("Sarcastic GROQ")
|
31 |
+
input_text = st.text_input("Ask you question mate!")
|
32 |
+
|
33 |
+
if input_text:
|
34 |
+
st.write(chain.invoke({"way": "sarcasm", "question": input_text}))
|