|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
import os, os.path as osp |
|
import torch |
|
|
|
from transformers import ( |
|
LlamaForCausalLM, |
|
LlamaConfig, |
|
PreTrainedModel, |
|
AutoConfig, |
|
AutoModel, |
|
GenerationConfig, |
|
PretrainedConfig, |
|
PreTrainedModel, |
|
) |
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM |
|
from ..multimodal_encoder.builder import build_vision_tower |
|
from ..multimodal_projector.builder import build_mm_projector |
|
from ..configuration_llava import LlavaConfig |
|
from ..utils import get_model_config |
|
from .builder import build_llm_and_tokenizer |
|
|
|
|
|
class LlavaLlamaConfig(LlavaConfig): |
|
model_type = "llava_llama" |
|
|
|
|
|
class LlavaLlamaModel(LlavaMetaModel, LlavaMetaForCausalLM, PreTrainedModel): |
|
config_class = LlavaLlamaConfig |
|
main_input_name = "input_embeds" |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, config: LlavaLlamaConfig = None, *args, **kwargs) -> None: |
|
super().__init__(config) |
|
return self.init_vlm(config=config, *args, **kwargs) |
|
|
|
@classmethod |
|
def from_pretrained( |
|
cls, |
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], |
|
*model_args, |
|
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
ignore_mismatched_sizes: bool = False, |
|
force_download: bool = False, |
|
local_files_only: bool = False, |
|
token: Optional[Union[str, bool]] = None, |
|
revision: str = "main", |
|
use_safetensors: bool = None, |
|
**kwargs, |
|
): |
|
if hasattr(cls, "load_pretrained"): |
|
return cls.load_pretrained(pretrained_model_name_or_path, |
|
*model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token, |
|
revision=revision, use_safetensors=use_safetensors, **kwargs |
|
) |
|
return super(LlavaLlamaModel).from_pretrained(pretrained_model_name_or_path, |
|
*model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token, |
|
revision=revision, use_safetensors=use_safetensors, **kwargs) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
self.freezed_module_patch() |
|
if inputs_embeds is None: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels, |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, position_ids, attention_mask, past_key_values, labels, images |
|
) |
|
|
|
if self.training: |
|
( |
|
_, |
|
new_position_ids, |
|
new_attention_mask, |
|
_, |
|
new_inputs_embeds, |
|
new_labels, |
|
sorted_seqlens_in_batch, |
|
) = self.repack_multimodal_data( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels, |
|
) |
|
new_input_ids = None |
|
past_key_values = None |
|
else: |
|
new_attention_mask = attention_mask |
|
new_position_ids = position_ids |
|
new_inputs_embeds = inputs_embeds |
|
new_labels = labels |
|
sorted_seqlens_in_batch = attention_mask.sum(-1).int() |
|
new_input_ids = input_ids |
|
|
|
outputs = self.llm.forward( |
|
input_ids=new_input_ids, |
|
attention_mask=new_attention_mask, |
|
position_ids=new_position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=new_inputs_embeds, |
|
labels=new_labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
seqlens_in_batch=sorted_seqlens_in_batch, |
|
) |
|
return outputs |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
input_ids: Optional[torch.FloatTensor] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
**generation_kwargs, |
|
): |
|
if images is not None: |
|
( |
|
_, |
|
_, |
|
attention_mask, |
|
_, |
|
inputs_embeds, |
|
_, |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, None, attention_mask, None, None, images |
|
) |
|
else: |
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
inputs_embeds = inputs_embeds.to(self.dtype) |
|
|
|
outputs = self.llm.generate( |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
**generation_kwargs |
|
) |
|
return outputs |
|
|
|
|
|
AutoConfig.register("llava_llama", LlavaLlamaConfig) |
|
AutoModel.register(LlavaLlamaConfig, LlavaLlamaModel) |
|
|