Spaces:
Build error
Build error
import matplotlib | |
matplotlib.use('Agg') | |
import torch | |
from torch import nn | |
from e4e.models.encoders import psp_encoders | |
from e4e.models.stylegan2.model import Generator | |
from e4e.configs.paths_config import model_paths | |
def get_keys(d, name): | |
if 'state_dict' in d: | |
d = d['state_dict'] | |
d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name} | |
return d_filt | |
class pSp(nn.Module): | |
def __init__(self, opts, device): | |
super(pSp, self).__init__() | |
self.opts = opts | |
self.device = device | |
# Define architecture | |
self.encoder = self.set_encoder() | |
self.decoder = Generator(opts.stylegan_size, 512, 8, channel_multiplier=2) | |
self.face_pool = torch.nn.AdaptiveAvgPool2d((256, 256)) | |
# Load weights if needed | |
self.load_weights() | |
def set_encoder(self): | |
if self.opts.encoder_type == 'GradualStyleEncoder': | |
encoder = psp_encoders.GradualStyleEncoder(50, 'ir_se', self.opts) | |
elif self.opts.encoder_type == 'Encoder4Editing': | |
encoder = psp_encoders.Encoder4Editing(50, 'ir_se', self.opts) | |
else: | |
raise Exception('{} is not a valid encoders'.format(self.opts.encoder_type)) | |
return encoder | |
def load_weights(self): | |
if self.opts.checkpoint_path is not None: | |
print('Loading e4e over the pSp framework from checkpoint: {}'.format(self.opts.checkpoint_path)) | |
ckpt = torch.load(self.opts.checkpoint_path, map_location='cpu') | |
self.encoder.load_state_dict(get_keys(ckpt, 'encoder'), strict=True) | |
self.decoder.load_state_dict(get_keys(ckpt, 'decoder'), strict=True) | |
self.__load_latent_avg(ckpt) | |
else: | |
print('Loading encoders weights from irse50!') | |
encoder_ckpt = torch.load(model_paths['ir_se50']) | |
self.encoder.load_state_dict(encoder_ckpt, strict=False) | |
print('Loading decoder weights from pretrained!') | |
ckpt = torch.load(self.opts.stylegan_weights) | |
self.decoder.load_state_dict(ckpt['g_ema'], strict=False) | |
self.__load_latent_avg(ckpt, repeat=self.encoder.style_count) | |
def forward(self, x, resize=True, latent_mask=None, input_code=False, randomize_noise=True, | |
inject_latent=None, return_latents=False, alpha=None): | |
if input_code: | |
codes = x | |
else: | |
codes = self.encoder(x) | |
# normalize with respect to the center of an average face | |
if self.opts.start_from_latent_avg: | |
if codes.ndim == 2: | |
codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1)[:, 0, :] | |
else: | |
codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1) | |
if latent_mask is not None: | |
for i in latent_mask: | |
if inject_latent is not None: | |
if alpha is not None: | |
codes[:, i] = alpha * inject_latent[:, i] + (1 - alpha) * codes[:, i] | |
else: | |
codes[:, i] = inject_latent[:, i] | |
else: | |
codes[:, i] = 0 | |
input_is_latent = not input_code | |
images, result_latent = self.decoder([codes], | |
input_is_latent=input_is_latent, | |
randomize_noise=randomize_noise, | |
return_latents=return_latents) | |
if resize: | |
images = self.face_pool(images) | |
if return_latents: | |
return images, result_latent | |
else: | |
return images | |
def __load_latent_avg(self, ckpt, repeat=None): | |
if 'latent_avg' in ckpt: | |
self.latent_avg = ckpt['latent_avg'].to(self.device) | |
if repeat is not None: | |
self.latent_avg = self.latent_avg.repeat(repeat, 1) | |
else: | |
self.latent_avg = None | |