Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
3 |
+
|
4 |
+
MODELS = {
|
5 |
+
"Tatar": {"model_id": "sammy786/wav2vec2-xlsr-tatar", "has_lm": False},
|
6 |
+
"Chuvash": {"model_id": "sammy786/wav2vec2-xlsr-chuvash", "has_lm": False}
|
7 |
+
}
|
8 |
+
|
9 |
+
CACHED_MODELS_BY_ID = {}
|
10 |
+
|
11 |
+
LANGUAGES = sorted(MODELS.keys())
|
12 |
+
|
13 |
+
def run(input_file, language, decoding_type, history):
|
14 |
+
|
15 |
+
#logger.info(f"Running ASR {language}-{model_size}-{decoding_type} for {input_file}")
|
16 |
+
|
17 |
+
model = MODELS.get(language, None)
|
18 |
+
|
19 |
+
|
20 |
+
if decoding_type == "LM" and not model["has_lm"]:
|
21 |
+
history.append({
|
22 |
+
"error_message": f"LM not available for {language} language :("
|
23 |
+
})
|
24 |
+
else:
|
25 |
+
|
26 |
+
# model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
|
27 |
+
model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None)
|
28 |
+
if model_instance is None:
|
29 |
+
model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
|
30 |
+
CACHED_MODELS_BY_ID[model["model_id"]] = model_instance
|
31 |
+
|
32 |
+
if decoding_type == "LM":
|
33 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"])
|
34 |
+
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
35 |
+
feature_extractor=processor.feature_extractor, decoder=processor.decoder)
|
36 |
+
else:
|
37 |
+
processor = Wav2Vec2Processor.from_pretrained(model["model_id"])
|
38 |
+
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
39 |
+
feature_extractor=processor.feature_extractor, decoder=None)
|
40 |
+
|
41 |
+
transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"]
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
return transcription
|
46 |
+
|
47 |
+
gr.Interface(
|
48 |
+
run,
|
49 |
+
inputs=[
|
50 |
+
gr.Audio(source="microphone", type="filepath", label="Record something..."),
|
51 |
+
gr.Radio(label="Language", choices=LANGUAGES),
|
52 |
+
gr.Radio(label="Decoding type", choices=["greedy", "LM"]),
|
53 |
+
# gr.inputs.Radio(label="Model size", choices=["300M", "1B"]),
|
54 |
+
"state"
|
55 |
+
],
|
56 |
+
outputs=[
|
57 |
+
gr.TextBox
|
58 |
+
],
|
59 |
+
allow_screenshot=False,
|
60 |
+
allow_flagging="never",
|
61 |
+
theme="grass"
|
62 |
+
).launch(enable_queue=True)
|