|
import numpy as np |
|
import onnx |
|
from onnx import shape_inference |
|
try: |
|
import onnx_graphsurgeon as gs |
|
except Exception as e: |
|
print('Import onnx_graphsurgeon failure: %s' % e) |
|
|
|
import logging |
|
|
|
LOGGER = logging.getLogger(__name__) |
|
|
|
class RegisterNMS(object): |
|
def __init__( |
|
self, |
|
onnx_model_path: str, |
|
precision: str = "fp32", |
|
): |
|
|
|
self.graph = gs.import_onnx(onnx.load(onnx_model_path)) |
|
assert self.graph |
|
LOGGER.info("ONNX graph created successfully") |
|
|
|
self.graph.fold_constants() |
|
self.precision = precision |
|
self.batch_size = 1 |
|
def infer(self): |
|
""" |
|
Sanitize the graph by cleaning any unconnected nodes, do a topological resort, |
|
and fold constant inputs values. When possible, run shape inference on the |
|
ONNX graph to determine tensor shapes. |
|
""" |
|
for _ in range(3): |
|
count_before = len(self.graph.nodes) |
|
|
|
self.graph.cleanup().toposort() |
|
try: |
|
for node in self.graph.nodes: |
|
for o in node.outputs: |
|
o.shape = None |
|
model = gs.export_onnx(self.graph) |
|
model = shape_inference.infer_shapes(model) |
|
self.graph = gs.import_onnx(model) |
|
except Exception as e: |
|
LOGGER.info(f"Shape inference could not be performed at this time:\n{e}") |
|
try: |
|
self.graph.fold_constants(fold_shapes=True) |
|
except TypeError as e: |
|
LOGGER.error( |
|
"This version of ONNX GraphSurgeon does not support folding shapes, " |
|
f"please upgrade your onnx_graphsurgeon module. Error:\n{e}" |
|
) |
|
raise |
|
|
|
count_after = len(self.graph.nodes) |
|
if count_before == count_after: |
|
|
|
break |
|
|
|
def save(self, output_path): |
|
""" |
|
Save the ONNX model to the given location. |
|
Args: |
|
output_path: Path pointing to the location where to write |
|
out the updated ONNX model. |
|
""" |
|
self.graph.cleanup().toposort() |
|
model = gs.export_onnx(self.graph) |
|
onnx.save(model, output_path) |
|
LOGGER.info(f"Saved ONNX model to {output_path}") |
|
|
|
def register_nms( |
|
self, |
|
*, |
|
score_thresh: float = 0.25, |
|
nms_thresh: float = 0.45, |
|
detections_per_img: int = 100, |
|
): |
|
""" |
|
Register the ``EfficientNMS_TRT`` plugin node. |
|
NMS expects these shapes for its input tensors: |
|
- box_net: [batch_size, number_boxes, 4] |
|
- class_net: [batch_size, number_boxes, number_labels] |
|
Args: |
|
score_thresh (float): The scalar threshold for score (low scoring boxes are removed). |
|
nms_thresh (float): The scalar threshold for IOU (new boxes that have high IOU |
|
overlap with previously selected boxes are removed). |
|
detections_per_img (int): Number of best detections to keep after NMS. |
|
""" |
|
|
|
self.infer() |
|
|
|
op_inputs = self.graph.outputs |
|
op = "EfficientNMS_TRT" |
|
attrs = { |
|
"plugin_version": "1", |
|
"background_class": -1, |
|
"max_output_boxes": detections_per_img, |
|
"score_threshold": score_thresh, |
|
"iou_threshold": nms_thresh, |
|
"score_activation": False, |
|
"box_coding": 0, |
|
} |
|
|
|
if self.precision == "fp32": |
|
dtype_output = np.float32 |
|
elif self.precision == "fp16": |
|
dtype_output = np.float16 |
|
else: |
|
raise NotImplementedError(f"Currently not supports precision: {self.precision}") |
|
|
|
|
|
output_num_detections = gs.Variable( |
|
name="num_dets", |
|
dtype=np.int32, |
|
shape=[self.batch_size, 1], |
|
) |
|
output_boxes = gs.Variable( |
|
name="det_boxes", |
|
dtype=dtype_output, |
|
shape=[self.batch_size, detections_per_img, 4], |
|
) |
|
output_scores = gs.Variable( |
|
name="det_scores", |
|
dtype=dtype_output, |
|
shape=[self.batch_size, detections_per_img], |
|
) |
|
output_labels = gs.Variable( |
|
name="det_classes", |
|
dtype=np.int32, |
|
shape=[self.batch_size, detections_per_img], |
|
) |
|
|
|
op_outputs = [output_num_detections, output_boxes, output_scores, output_labels] |
|
|
|
|
|
|
|
self.graph.layer(op=op, name="batched_nms", inputs=op_inputs, outputs=op_outputs, attrs=attrs) |
|
LOGGER.info(f"Created NMS plugin '{op}' with attributes: {attrs}") |
|
|
|
self.graph.outputs = op_outputs |
|
|
|
self.infer() |
|
|
|
def save(self, output_path): |
|
""" |
|
Save the ONNX model to the given location. |
|
Args: |
|
output_path: Path pointing to the location where to write |
|
out the updated ONNX model. |
|
""" |
|
self.graph.cleanup().toposort() |
|
model = gs.export_onnx(self.graph) |
|
onnx.save(model, output_path) |
|
LOGGER.info(f"Saved ONNX model to {output_path}") |
|
|