|
from keras.models import load_model |
|
import numpy as np |
|
from keras.preprocessing import image |
|
import gradio as gr |
|
from PIL import Image |
|
|
|
def a(img): |
|
img = img.reshape( 64,64,3) |
|
model=load_model('./cats&dog.h5') |
|
test_image=np.expand_dims(img, axis=0) |
|
result=model.predict(test_image) |
|
if result[0][0]==1: |
|
prediction='Dog' |
|
print(prediction) |
|
return prediction |
|
else: |
|
prediction='Cat' |
|
print(prediction) |
|
return prediction |
|
|
|
|
|
input = gr.inputs.Image(type='pil', label="Original Image", source="upload", optional=True) |
|
inputs = [input] |
|
outputs = gr.outputs.Image(type="pil", label="Output Image") |
|
title = "Dog and Cat Object detection" |
|
|
|
image = gr.inputs.Image(shape=(64,64)) |
|
|
|
demo=gr.Interface(fn=a, inputs=image,examples=["photo/a01.jpg", "photo/a02.jpg","photo/a03.jpg","photo/a04.jpg"],outputs="text").launch(debug='True') |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |