Spaces:
Running
Running
from abc import ABC, abstractmethod | |
from typing import List, Optional | |
import torch | |
from PIL import Image | |
from transformers import is_torch_xpu_available | |
class AbstractMultimodalPipeline(ABC): | |
def name() -> str: | |
'name of the pipeline, should be same as in --multimodal-pipeline' | |
pass | |
def image_start() -> Optional[str]: | |
'return image start string, string representation of image start token, or None if not applicable' | |
pass | |
def image_end() -> Optional[str]: | |
'return image end string, string representation of image end token, or None if not applicable' | |
pass | |
def placeholder_token_id() -> int: | |
'return placeholder token id' | |
pass | |
def num_image_embeds() -> int: | |
'return the number of embeds used by a single image (for example: 256 for LLaVA)' | |
pass | |
def embed_images(self, images: List[Image.Image]) -> torch.Tensor: | |
'forward the images through vision pipeline, and return their embeddings' | |
pass | |
def embed_tokens(input_ids: torch.Tensor) -> torch.Tensor: | |
'embed tokens, the exact function varies by LLM, for LLaMA it is `shared.model.model.embed_tokens`' | |
pass | |
def placeholder_embeddings() -> torch.Tensor: | |
'get placeholder embeddings if there are multiple images, and `add_all_images_to_prompt` is False' | |
pass | |
def _get_device(self, setting_name: str, params: dict): | |
if params[setting_name] is None: | |
return torch.device("cuda:0" if torch.cuda.is_available() else "xpu:0" if is_torch_xpu_available() else "cpu") | |
return torch.device(params[setting_name]) | |
def _get_dtype(self, setting_name: str, params: dict): | |
return torch.float32 if int(params[setting_name]) == 32 else torch.float16 | |