Spaces:
Runtime error
Runtime error
import { pipeline, env } from "@xenova/transformers"; | |
import init, { Model } from "./phi/m.js"; | |
import URI from "urijs" | |
// Shamelessly stolen from Transformers.js | |
export async function tryCache(cache, ...names) { | |
for (let name of names) { | |
try { | |
console.log(name) | |
let result = await cache.match(name); | |
if (result) return result; | |
} catch (e) { | |
continue; | |
} | |
} | |
return undefined; | |
} | |
async function read_stream(url, response) { | |
const reader = response.body.getReader(); | |
const contentLength = +response.headers.get('Content-Length'); | |
let receivedLength = 0; | |
let chunks = []; | |
let uri = new URI(url) | |
while(true) { | |
const {done, value} = await reader.read(); | |
if (done) { | |
break; | |
} | |
chunks.push(value); | |
receivedLength += value.length; | |
let percent = (receivedLength / contentLength) * 100 | |
self.postMessage({ status: "progress", file: uri.filename(), progress: percent }); | |
} | |
let chunksAll = new Uint8Array(receivedLength); | |
let position = 0; | |
for(let chunk of chunks) { | |
chunksAll.set(chunk, position); | |
position += chunk.length; | |
} | |
return chunksAll | |
} | |
async function fetchArrayBuffer(url) { | |
let cache = await caches.open('transformers-cache'); | |
const response = await tryCache(cache, url); | |
if (response != undefined) { | |
console.log(url) | |
let res = await read_stream(url, response) | |
cache.put(url, new Response(res, { | |
headers: response.headers | |
})); | |
return new Uint8Array(res); | |
} | |
else { | |
const response = await fetch(url); | |
let res = await read_stream(url, response) | |
cache.put(url, new Response(res, { | |
headers: response.headers, | |
})); | |
return new Uint8Array(res); | |
} | |
} | |
class Phi { | |
static instance = {}; | |
static async getInstance(weightsURL, modelID, tokenizerURL, quantized) { | |
// load individual modelID only once | |
if (!this.instance[modelID]) { | |
await init(); | |
self.postMessage({ status: "loading", message: "Loading Model" }); | |
const [weightsArrayU8, tokenizerArrayU8] = await Promise.all([ | |
fetchArrayBuffer(weightsURL), | |
fetchArrayBuffer(tokenizerURL), | |
]); | |
self.postMessage({ status: "init_model" }); | |
this.instance[modelID] = new Model( | |
weightsArrayU8, | |
tokenizerArrayU8, | |
quantized | |
); | |
self.postMessage({ status: "ready" }); | |
} | |
return this.instance[modelID]; | |
} | |
} | |
export class FlanPipeline { | |
static curr_model = ""; | |
static instance = null; | |
static async getInstance(progress_callback = null, model, task) { | |
if (this.instance === null) { | |
this.instance = pipeline(task, model, { progress_callback }); | |
this.curr_model = model; | |
} else { | |
if (this.curr_model != model) { | |
this.instance = pipeline(task, model, { progress_callback }); | |
this.curr_model = model; | |
} | |
} | |
return this.instance; | |
} | |
} | |
let controller = null; | |
let phi_model = null; | |
// Listen for messages from the main thread | |
self.addEventListener("message", async (event) => { | |
if (event.data.command != "abort") { | |
if (event.data.is_phi) { | |
controller = new AbortController(); | |
generate_phi(event.data); | |
} | |
else { | |
let pipe = await FlanPipeline.getInstance( | |
(x) => { | |
self.postMessage(x); | |
}, | |
event.data.model, | |
event.data.task | |
); | |
let output = await pipe(event.data.text, { | |
max_new_tokens: event.data.max_new_tokens, | |
temperature: event.data.temperature, | |
callback_function: (x) => { | |
self.postMessage({ | |
status: "update", | |
output: pipe.tokenizer.decode(x[0].output_token_ids, { skip_special_tokens: true }), | |
id_now: event.data.id_now, | |
}); | |
}, | |
}); | |
// Send the output back to the main thread | |
self.postMessage({ | |
status: "complete", | |
output: output, | |
searchID: event.data.searchID, | |
id_now: event.data.id_now, | |
}); | |
} | |
} | |
else { | |
if (controller != null) | |
controller.abort(); | |
} | |
}); | |
async function generate_phi(data) { | |
const tokenizerURL = "https://huggingface.co/microsoft/phi-1_5/raw/main/tokenizer.json"; | |
const weightsURL = "https://huggingface.co/lmz/candle-quantized-phi/resolve/main/model-q4k.gguf"; | |
let prompt = data.text | |
let maxSeqLen = data.max_new_tokens | |
let temp = data.temperature | |
let modelID = 0; | |
let quantized = true; | |
let top_p = 1; | |
let repeatPenalty = 1.1; | |
let seed = 299792458; | |
self.postMessage({ status: "initiate", file: "tokenizer.json", name: "phi-1_5" }); // Fake init | |
try { | |
const model = await Phi.getInstance( | |
weightsURL, | |
modelID, | |
tokenizerURL, | |
quantized | |
); | |
const firstToken = model.init_with_prompt( | |
prompt, | |
temp, | |
top_p, | |
repeatPenalty, | |
64, | |
BigInt(seed) | |
); | |
const seq_len = 2048; | |
let sentence = firstToken; | |
let maxTokens = maxSeqLen ? maxSeqLen : seq_len - prompt.length - 1; | |
let startTime = performance.now(); | |
let tokensCount = 0; | |
while (tokensCount < maxTokens) { | |
await new Promise(async (resolve) => { | |
if (controller && controller.signal.aborted) { | |
self.postMessage({ | |
status: "aborted", | |
message: "Aborted", | |
output: sentence, | |
searchID: data.searchID, | |
id_now: data.id_now, | |
}); | |
return; | |
} | |
const token = await model.next_token(); | |
if (token === "<|endoftext|>") { | |
self.postMessage({ | |
status: "complete", | |
output: sentence, | |
searchID: data.searchID, | |
id_now: data.id_now, | |
}); | |
return; | |
} | |
const tokensSec = | |
((tokensCount + 1) / (performance.now() - startTime)) * 1000; | |
sentence += token; | |
self.postMessage({ | |
status: "update", | |
message: "Generating token", | |
token: token, | |
output: sentence, | |
totalTime: performance.now() - startTime, | |
tokensSec, | |
prompt: prompt, | |
id_now: data.id_now, | |
}); | |
setTimeout(resolve, 0); | |
}); | |
tokensCount++; | |
} | |
self.postMessage({ | |
status: "complete", | |
output: sentence, | |
searchID: data.searchID, | |
id_now: data.id_now, | |
}); | |
} catch (e) { | |
console.log(e) | |
self.postMessage({ error: e }); | |
} | |
} |