JoFrost
feat: loading bar for phi
6e8146a
raw
history blame
5.94 kB
import { pipeline, env } from "@xenova/transformers";
import init, { Model } from "./phi/m.js";
import URI from "urijs"
// Shamelessly stolen from Transformers.js
export async function tryCache(cache, ...names) {
for (let name of names) {
try {
console.log(name)
let result = await cache.match(name);
if (result) return result;
} catch (e) {
continue;
}
}
return undefined;
}
async function read_stream(url, response) {
const reader = response.body.getReader();
const contentLength = +response.headers.get('Content-Length');
let receivedLength = 0;
let chunks = [];
let uri = new URI(url)
while(true) {
const {done, value} = await reader.read();
if (done) {
break;
}
chunks.push(value);
receivedLength += value.length;
let percent = (receivedLength / contentLength) * 100
self.postMessage({ status: "progress", file: uri.filename(), progress: percent });
}
let chunksAll = new Uint8Array(receivedLength);
let position = 0;
for(let chunk of chunks) {
chunksAll.set(chunk, position);
position += chunk.length;
}
return chunksAll
}
async function fetchArrayBuffer(url) {
let cache = await caches.open('transformers-cache');
const response = await tryCache(cache, url);
if (response != undefined) {
console.log(url)
let res = await read_stream(url, response)
cache.put(url, new Response(res, {
headers: response.headers
}));
return new Uint8Array(res);
}
else {
const response = await fetch(url);
let res = await read_stream(url, response)
cache.put(url, new Response(res, {
headers: response.headers,
}));
return new Uint8Array(res);
}
}
class Phi {
static instance = {};
static async getInstance(weightsURL, modelID, tokenizerURL, quantized) {
// load individual modelID only once
if (!this.instance[modelID]) {
await init();
self.postMessage({ status: "loading", message: "Loading Model" });
const [weightsArrayU8, tokenizerArrayU8] = await Promise.all([
fetchArrayBuffer(weightsURL),
fetchArrayBuffer(tokenizerURL),
]);
self.postMessage({ status: "init_model" });
this.instance[modelID] = new Model(
weightsArrayU8,
tokenizerArrayU8,
quantized
);
self.postMessage({ status: "ready" });
}
return this.instance[modelID];
}
}
export class FlanPipeline {
static curr_model = "";
static instance = null;
static async getInstance(progress_callback = null, model, task) {
if (this.instance === null) {
this.instance = pipeline(task, model, { progress_callback });
this.curr_model = model;
} else {
if (this.curr_model != model) {
this.instance = pipeline(task, model, { progress_callback });
this.curr_model = model;
}
}
return this.instance;
}
}
let controller = null;
let phi_model = null;
// Listen for messages from the main thread
self.addEventListener("message", async (event) => {
if (event.data.command != "abort") {
if (event.data.is_phi) {
controller = new AbortController();
generate_phi(event.data);
}
else {
let pipe = await FlanPipeline.getInstance(
(x) => {
self.postMessage(x);
},
event.data.model,
event.data.task
);
let output = await pipe(event.data.text, {
max_new_tokens: event.data.max_new_tokens,
temperature: event.data.temperature,
callback_function: (x) => {
self.postMessage({
status: "update",
output: pipe.tokenizer.decode(x[0].output_token_ids, { skip_special_tokens: true }),
id_now: event.data.id_now,
});
},
});
// Send the output back to the main thread
self.postMessage({
status: "complete",
output: output,
searchID: event.data.searchID,
id_now: event.data.id_now,
});
}
}
else {
if (controller != null)
controller.abort();
}
});
async function generate_phi(data) {
const tokenizerURL = "https://huggingface.co/microsoft/phi-1_5/raw/main/tokenizer.json";
const weightsURL = "https://huggingface.co/lmz/candle-quantized-phi/resolve/main/model-q4k.gguf";
let prompt = data.text
let maxSeqLen = data.max_new_tokens
let temp = data.temperature
let modelID = 0;
let quantized = true;
let top_p = 1;
let repeatPenalty = 1.1;
let seed = 299792458;
self.postMessage({ status: "initiate", file: "tokenizer.json", name: "phi-1_5" }); // Fake init
try {
const model = await Phi.getInstance(
weightsURL,
modelID,
tokenizerURL,
quantized
);
const firstToken = model.init_with_prompt(
prompt,
temp,
top_p,
repeatPenalty,
64,
BigInt(seed)
);
const seq_len = 2048;
let sentence = firstToken;
let maxTokens = maxSeqLen ? maxSeqLen : seq_len - prompt.length - 1;
let startTime = performance.now();
let tokensCount = 0;
while (tokensCount < maxTokens) {
await new Promise(async (resolve) => {
if (controller && controller.signal.aborted) {
self.postMessage({
status: "aborted",
message: "Aborted",
output: sentence,
searchID: data.searchID,
id_now: data.id_now,
});
return;
}
const token = await model.next_token();
if (token === "<|endoftext|>") {
self.postMessage({
status: "complete",
output: sentence,
searchID: data.searchID,
id_now: data.id_now,
});
return;
}
const tokensSec =
((tokensCount + 1) / (performance.now() - startTime)) * 1000;
sentence += token;
self.postMessage({
status: "update",
message: "Generating token",
token: token,
output: sentence,
totalTime: performance.now() - startTime,
tokensSec,
prompt: prompt,
id_now: data.id_now,
});
setTimeout(resolve, 0);
});
tokensCount++;
}
self.postMessage({
status: "complete",
output: sentence,
searchID: data.searchID,
id_now: data.id_now,
});
} catch (e) {
console.log(e)
self.postMessage({ error: e });
}
}