jadehardouin
commited on
Commit
·
4424c49
1
Parent(s):
0ad933c
Update models.py
Browse files
models.py
CHANGED
@@ -99,7 +99,7 @@ class OpenSourceLlama2Model(BaseTCOModel):
|
|
99 |
with: <br>
|
100 |
CT = Cost per Token <br>
|
101 |
VM_CH = VM Cost per Hour <br>
|
102 |
-
TS = Tokens per Second
|
103 |
MO = Maxed Out <br>
|
104 |
U = Used
|
105 |
""")
|
@@ -107,15 +107,16 @@ class OpenSourceLlama2Model(BaseTCOModel):
|
|
107 |
|
108 |
def render(self):
|
109 |
vm_choices = ["1x Nvidia A100 (Azure NC24ads A100 v4)",
|
110 |
-
"2x Nvidia A100 (Azure NC48ads A100 v4)"
|
|
|
111 |
|
112 |
def on_model_change(model):
|
113 |
if model == "Llama 2 7B":
|
114 |
-
return gr.Dropdown.update(choices=vm_choices)
|
115 |
else:
|
116 |
-
not_supported_vm = ["1x Nvidia A100 (Azure NC24ads A100 v4)"]
|
117 |
choices = [x for x in vm_choices if x not in not_supported_vm]
|
118 |
-
return gr.Dropdown.update(choices=choices)
|
119 |
|
120 |
def on_vm_change(model, vm):
|
121 |
# TO DO: load info from CSV
|
@@ -123,6 +124,10 @@ class OpenSourceLlama2Model(BaseTCOModel):
|
|
123 |
return [gr.Number.update(value=3.6730), gr.Number.update(value=694.38)]
|
124 |
elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure NC48ads A100 v4)":
|
125 |
return [gr.Number.update(value=7.346), gr.Number.update(value=1388.76)]
|
|
|
|
|
|
|
|
|
126 |
|
127 |
self.model = gr.Dropdown(["Llama 2 7B", "Llama 2 70B"], value="Llama 2 7B", label="OpenSource models", visible=False)
|
128 |
self.vm = gr.Dropdown(vm_choices,
|
@@ -132,22 +137,67 @@ class OpenSourceLlama2Model(BaseTCOModel):
|
|
132 |
info="Your options for this choice depend on the model you previously chose"
|
133 |
)
|
134 |
self.vm_cost_per_hour = gr.Number(3.6730, label="VM instance cost per hour",
|
135 |
-
interactive=
|
136 |
self.tokens_per_second = gr.Number(694.38, visible=False,
|
137 |
label="Number of tokens per second for this specific model and VM instance",
|
138 |
interactive=False
|
139 |
)
|
140 |
-
self.input_length = gr.Number(
|
141 |
-
interactive=
|
|
|
|
|
142 |
|
143 |
-
self.model.change(on_model_change, inputs=self.model, outputs=self.vm)
|
144 |
self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=[self.vm_cost_per_hour, self.tokens_per_second])
|
145 |
self.maxed_out = gr.Slider(minimum=0.01, value=50., step=0.01, label="% maxed out",
|
146 |
-
info="How much the GPU is fully used
|
147 |
interactive=True,
|
148 |
visible=False)
|
149 |
self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used",
|
150 |
-
info="Percentage of time the GPU is used
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
interactive=True,
|
152 |
visible=False)
|
153 |
|
@@ -174,8 +224,8 @@ class CohereModel(BaseTCOModel):
|
|
174 |
else:
|
175 |
return gr.Dropdown.update(choices=["Default", "Custom"])
|
176 |
|
177 |
-
self.use_case = gr.Dropdown(["
|
178 |
-
label="
|
179 |
interactive=True, visible=False)
|
180 |
self.model = gr.Dropdown(["Default", "Custom"], value="Default",
|
181 |
label="Model",
|
@@ -189,21 +239,11 @@ class CohereModel(BaseTCOModel):
|
|
189 |
use_case = use_case[0]
|
190 |
model = model[0]
|
191 |
|
192 |
-
if use_case == "
|
193 |
-
if model == "Default":
|
194 |
-
cost_per_1M_input_tokens = 0.4
|
195 |
-
else:
|
196 |
-
cost_per_1M_input_tokens = 0.8
|
197 |
-
elif use_case == "Generate":
|
198 |
if model == "Default":
|
199 |
cost_per_1M_input_tokens = 15
|
200 |
else:
|
201 |
cost_per_1M_input_tokens = 30
|
202 |
-
elif use_case == "Classify":
|
203 |
-
if model == "Default":
|
204 |
-
cost_per_1M_input_tokens = 200
|
205 |
-
else:
|
206 |
-
cost_per_1M_input_tokens = 200
|
207 |
else:
|
208 |
cost_per_1M_input_tokens = 15
|
209 |
|
|
|
99 |
with: <br>
|
100 |
CT = Cost per Token <br>
|
101 |
VM_CH = VM Cost per Hour <br>
|
102 |
+
TS = Tokens per Second <br>
|
103 |
MO = Maxed Out <br>
|
104 |
U = Used
|
105 |
""")
|
|
|
107 |
|
108 |
def render(self):
|
109 |
vm_choices = ["1x Nvidia A100 (Azure NC24ads A100 v4)",
|
110 |
+
"2x Nvidia A100 (Azure NC48ads A100 v4)",
|
111 |
+
"4x Nvidia A100 (Azure NC48ads A100 v4)"]
|
112 |
|
113 |
def on_model_change(model):
|
114 |
if model == "Llama 2 7B":
|
115 |
+
return [gr.Dropdown.update(choices=vm_choices), gr.Markdown.update(visible=True), gr.Markdown.update(visible=False)]
|
116 |
else:
|
117 |
+
not_supported_vm = ["1x Nvidia A100 (Azure NC24ads A100 v4)", "2x Nvidia A100 (Azure NC48ads A100 v4)"]
|
118 |
choices = [x for x in vm_choices if x not in not_supported_vm]
|
119 |
+
return [gr.Dropdown.update(choices=choices), gr.Markdown.update(visible=False), gr.Markdown.update(visible=True)]
|
120 |
|
121 |
def on_vm_change(model, vm):
|
122 |
# TO DO: load info from CSV
|
|
|
124 |
return [gr.Number.update(value=3.6730), gr.Number.update(value=694.38)]
|
125 |
elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure NC48ads A100 v4)":
|
126 |
return [gr.Number.update(value=7.346), gr.Number.update(value=1388.76)]
|
127 |
+
elif model == "Llama 2 7B" and vm == "4x Nvidia A100 (Azure NC48ads A100 v4)":
|
128 |
+
return [gr.Number.update(value=14.692), gr.Number.update(value=2777.52)]
|
129 |
+
elif model == "Llama 2 70B" and vm == "4x Nvidia A100 (Azure NC48ads A100 v4)":
|
130 |
+
return [gr.Number.update(value=14.692), gr.Number.update(value=18.6)]
|
131 |
|
132 |
self.model = gr.Dropdown(["Llama 2 7B", "Llama 2 70B"], value="Llama 2 7B", label="OpenSource models", visible=False)
|
133 |
self.vm = gr.Dropdown(vm_choices,
|
|
|
137 |
info="Your options for this choice depend on the model you previously chose"
|
138 |
)
|
139 |
self.vm_cost_per_hour = gr.Number(3.6730, label="VM instance cost per hour",
|
140 |
+
interactive=False, visible=False)
|
141 |
self.tokens_per_second = gr.Number(694.38, visible=False,
|
142 |
label="Number of tokens per second for this specific model and VM instance",
|
143 |
interactive=False
|
144 |
)
|
145 |
+
self.input_length = gr.Number(233, label="Average number of input tokens", info="This is the number of input tokens used when the model was benchmarked to get the number of tokens/second it processes",
|
146 |
+
interactive=False, visible=False)
|
147 |
+
self.info_7B = gr.Markdown("To see the script used to benchmark the Llama2-7B model, [click here](https://example.com/script)", interactive=False, visible=False)
|
148 |
+
self.info_70B = gr.Markdown("To see the benchmark results used for the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)", interactive=False, visible=False)
|
149 |
|
150 |
+
self.model.change(on_model_change, inputs=self.model, outputs=[self.vm, self.info_7B, self.info_70B])
|
151 |
self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=[self.vm_cost_per_hour, self.tokens_per_second])
|
152 |
self.maxed_out = gr.Slider(minimum=0.01, value=50., step=0.01, label="% maxed out",
|
153 |
+
info="How much the GPU is fully used",
|
154 |
interactive=True,
|
155 |
visible=False)
|
156 |
self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used",
|
157 |
+
info="Percentage of time the GPU is used",
|
158 |
+
interactive=True,
|
159 |
+
visible=False)
|
160 |
+
|
161 |
+
def compute_cost_per_token(self, vm_cost_per_hour, tokens_per_second, maxed_out, used):
|
162 |
+
cost_per_token = vm_cost_per_hour / (tokens_per_second * 3600 * maxed_out * used)
|
163 |
+
return cost_per_token
|
164 |
+
|
165 |
+
class OpenSourceDIY(BaseTCOModel):
|
166 |
+
|
167 |
+
def __init__(self):
|
168 |
+
self.set_name("(Open source) DIY")
|
169 |
+
self.set_formula(r"""$CT = \frac{VM\_CH}{TS \times 3600 \times MO \times U}$<br>
|
170 |
+
with: <br>
|
171 |
+
CT = Cost per Token <br>
|
172 |
+
VM_CH = VM Cost per Hour <br>
|
173 |
+
TS = Tokens per Second <br>
|
174 |
+
MO = Maxed Out <br>
|
175 |
+
U = Used
|
176 |
+
""")
|
177 |
+
super().__init__()
|
178 |
+
|
179 |
+
def render(self):
|
180 |
+
self.info = gr.Markdown("Compute the cost/token based on our formula below, using your own parameters", visible=False)
|
181 |
+
self.display_formula = gr.Markdown(r"""$CT = \frac{VM\_CH}{TS \times 3600 \times MO \times U}$<br>
|
182 |
+
with: <br>
|
183 |
+
CT = Cost per Token <br>
|
184 |
+
VM_CH = VM Cost per Hour <br>
|
185 |
+
TS = Tokens per Second <br>
|
186 |
+
MO = Maxed Out <br>
|
187 |
+
U = Used
|
188 |
+
""", visible=False)
|
189 |
+
self.vm_cost_per_hour = gr.Number(3.5, label="VM instance cost per hour",
|
190 |
+
interactive=True, visible=False)
|
191 |
+
self.tokens_per_second = gr.Number(700, visible=False,
|
192 |
+
label="Number of tokens per second for this specific model and VM instance",
|
193 |
+
interactive=True
|
194 |
+
)
|
195 |
+
self.maxed_out = gr.Slider(minimum=0.01, value=50., step=0.01, label="% maxed out",
|
196 |
+
info="How much the GPU is fully used",
|
197 |
+
interactive=True,
|
198 |
+
visible=False)
|
199 |
+
self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used",
|
200 |
+
info="Percentage of time the GPU is used",
|
201 |
interactive=True,
|
202 |
visible=False)
|
203 |
|
|
|
224 |
else:
|
225 |
return gr.Dropdown.update(choices=["Default", "Custom"])
|
226 |
|
227 |
+
self.use_case = gr.Dropdown(["Generate", "Summarize"], value="Generate",
|
228 |
+
label="API",
|
229 |
interactive=True, visible=False)
|
230 |
self.model = gr.Dropdown(["Default", "Custom"], value="Default",
|
231 |
label="Model",
|
|
|
239 |
use_case = use_case[0]
|
240 |
model = model[0]
|
241 |
|
242 |
+
if use_case == "Generate":
|
|
|
|
|
|
|
|
|
|
|
243 |
if model == "Default":
|
244 |
cost_per_1M_input_tokens = 15
|
245 |
else:
|
246 |
cost_per_1M_input_tokens = 30
|
|
|
|
|
|
|
|
|
|
|
247 |
else:
|
248 |
cost_per_1M_input_tokens = 15
|
249 |
|