Spaces:
Paused
Paused
| import gradio as gr | |
| import re | |
| from transformers import DonutProcessor, VisionEncoderDecoderModel | |
| import torch | |
| from PIL import Image | |
| def process_filename(filename, question): | |
| print(f"Image file: {filename}") | |
| print(f"Question: {question}") | |
| image = Image.open(filename).convert("RGB") | |
| return process_image(image) | |
| def process_image(set_use_cache, set_return_dict_in_generate, set_early_stopping, set_output_scores, image, question): | |
| repo_id = "naver-clova-ix/donut-base-finetuned-docvqa" | |
| print(f"Model repo: {repo_id}") | |
| processor = DonutProcessor.from_pretrained(repo_id) | |
| model = VisionEncoderDecoderModel.from_pretrained(repo_id) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"Device used: {device}") | |
| model.to(device) | |
| # prepare decoder inputs | |
| prompt = f"<s_docvqa><s_question>{question}</s_question><s_answer>" | |
| decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
| pixel_values = processor(image, return_tensors="pt").pixel_values | |
| outputs = model.generate( | |
| pixel_values.to(device), | |
| decoder_input_ids=decoder_input_ids.to(device), | |
| max_length=model.decoder.config.max_position_embeddings, | |
| pad_token_id=processor.tokenizer.pad_token_id, | |
| eos_token_id=processor.tokenizer.eos_token_id, | |
| use_cache=set_use_cache=="True", | |
| bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
| return_dict_in_generate=set_return_dict_in_generate=="True", | |
| early_stopping=set_early_stopping=="True", | |
| output_scores=set_output_scores=="True" | |
| ) | |
| sequence_data = processor.batch_decode(outputs.sequences) | |
| print(f"Sequence data: {sequence_data}") | |
| sequence = sequence_data[0] | |
| print(f"Sequence: {sequence}") | |
| sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
| sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token | |
| print(processor.token2json(sequence)) | |
| return processor.token2json(sequence)['answer'] | |
| description = "DocVQA (document visual question answering)" | |
| demo = gr.Interface( | |
| fn=process_image, | |
| inputs=[ | |
| gr.Radio(["True", "False"], value="True", label="Use cache", info="Define model.generate() use_cache value"), | |
| gr.Radio(["True", "False"], value="True", label="Dict in generate", info="Define model.generate() return_dict_in_generate value"), | |
| gr.Radio(["True", "False"], value="True", label="Early stopping", info="Define model.generate() early_stopping value"), | |
| gr.Radio(["True", "False"], value="True", label="Output scores", info="Define model.generate() output_scores value"), | |
| "image", | |
| gr.Textbox(label = "Question" ) | |
| ], | |
| outputs=gr.Textbox(label = "Response" ), | |
| title="Extract data from image", | |
| description=description, | |
| cache_examples=True) | |
| demo.launch() | |