mishtert commited on
Commit
3ab546a
1 Parent(s): d89b313

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +98 -0
app.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.system('pip install pyyaml==5.1')
3
+ # workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)
4
+ os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html')
5
+
6
+ # install detectron2 that matches pytorch 1.8
7
+ # See https://detectron2.readthedocs.io/tutorials/install.html for instructions
8
+ os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html')
9
+
10
+ ## install PyTesseract
11
+ os.system('pip install -q pytesseract')
12
+
13
+ import gradio as gr
14
+ import numpy as np
15
+ from transformers import LayoutLMv2Processor, LayoutLMv2ForTokenClassification
16
+ from datasets import load_dataset
17
+ from PIL import Image, ImageDraw, ImageFont
18
+
19
+ processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
20
+ #model = LayoutLMv2ForTokenClassification.from_pretrained("nielsr/layoutlmv2-finetuned-funsd")
21
+ model = LayoutLMv2ForTokenClassification.from_pretrained("Mishtert/Invoice_extraction_categorization")
22
+
23
+ # load image example
24
+ #dataset = load_dataset("nielsr/funsd", split="test")
25
+ dataset = load_dataset("Mishtert/niefunsd", split="test")
26
+ image = Image.open(dataset[0]["image_path"]).convert("RGB")
27
+ image = Image.open("./invoice.png")
28
+ image.save("document.png")
29
+ # define id2label, label2color
30
+ labels = dataset.features['ner_tags'].feature.names
31
+ id2label = {v: k for v, k in enumerate(labels)}
32
+ label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
33
+
34
+ def unnormalize_box(bbox, width, height):
35
+ return [
36
+ width * (bbox[0] / 1000),
37
+ height * (bbox[1] / 1000),
38
+ width * (bbox[2] / 1000),
39
+ height * (bbox[3] / 1000),
40
+ ]
41
+
42
+ def iob_to_label(label):
43
+ label = label[2:]
44
+ if not label:
45
+ return 'other'
46
+ return label
47
+
48
+ def process_image(image):
49
+ width, height = image.size
50
+
51
+ # encode
52
+ encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
53
+ offset_mapping = encoding.pop('offset_mapping')
54
+
55
+ # forward pass
56
+ outputs = model(**encoding)
57
+
58
+ # get predictions
59
+ predictions = outputs.logits.argmax(-1).squeeze().tolist()
60
+ token_boxes = encoding.bbox.squeeze().tolist()
61
+
62
+ # only keep non-subword predictions
63
+ is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
64
+ true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
65
+ true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
66
+
67
+ # draw predictions over the image
68
+ draw = ImageDraw.Draw(image)
69
+ font = ImageFont.load_default()
70
+ for prediction, box in zip(true_predictions, true_boxes):
71
+ predicted_label = iob_to_label(prediction).lower()
72
+ draw.rectangle(box, outline=label2color[predicted_label])
73
+ draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
74
+
75
+ return image
76
+
77
+
78
+ title = "Interactive demo: Invoice Extraction & Categorization"
79
+ description = "Text extracted and annotated QUESTION/ANSWER/HEADER/OTHER.
80
+
81
+ examples =[['document.png']]
82
+
83
+ css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
84
+ #css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
85
+ # css = ".output_image, .input_image {height: 600px !important}"
86
+
87
+ css = ".image-preview {height: auto !important;}"
88
+
89
+ iface = gr.Interface(fn=process_image,
90
+ inputs=gr.inputs.Image(type="pil"),
91
+ outputs=gr.outputs.Image(type="pil", label="annotated image"),
92
+ title=title,
93
+ description=description,
94
+ article=article,
95
+ examples=examples,
96
+ css=css,
97
+ enable_queue=True)
98
+ iface.launch(debug=True)