Spaces:
Runtime error
Runtime error
from typing import List | |
import openai | |
import gradio as gr | |
from os import getenv | |
from typing import Any, Dict, Generator, List | |
from huggingface_hub import InferenceClient | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") | |
temperature = 0.9 | |
top_p = 0.6 | |
repetition_penalty = 1.2 | |
OPENAI_KEY = getenv("OPENAI_API_KEY") | |
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") | |
hf_client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1", token=HF_TOKEN) | |
def embed_docs(prompt: str, documents: List[str]): | |
context_template = """ | |
I am giving you context from several documents. You goal is process the documents and use them in your answer. Here are the documents: | |
""" | |
for i, doc in enumerate(documents): | |
context_template += "\n" + f"Document {i}:\n" + doc | |
context_template += "\n" + "Here is the question:\n" + prompt | |
return context_template | |
def format_prompt(message: str, api_kind: str): | |
""" | |
Formats the given message using a chat template. | |
Args: | |
message (str): The user message to be formatted. | |
Returns: | |
str: Formatted message after applying the chat template. | |
""" | |
# Create a list of message dictionaries with role and content | |
messages: List[Dict[str, Any]] = [{"role": "user", "content": message}] | |
if api_kind == "openai": | |
return messages | |
elif api_kind == "hf": | |
return tokenizer.apply_chat_template(messages, tokenize=False) | |
elif api_kind: | |
raise ValueError("API is not supported") | |
def generate_hf( | |
prompt: str, | |
history: str, | |
temperature: float = 0.9, | |
max_new_tokens: int = 256, | |
top_p: float = 0.95, | |
repetition_penalty: float = 1.0, | |
) -> Generator[str, None, str]: | |
""" | |
Generate a sequence of tokens based on a given prompt and history using Mistral client. | |
Args: | |
prompt (str): The initial prompt for the text generation. | |
history (str): Context or history for the text generation. | |
temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9. | |
max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256. | |
top_p (float, optional): Nucleus sampling probability. Defaults to 0.95. | |
repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0. | |
Returns: | |
Generator[str, None, str]: A generator yielding chunks of generated text. | |
Returns a final string if an error occurs. | |
""" | |
temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low | |
top_p = float(top_p) | |
generate_kwargs = { | |
"temperature": temperature, | |
"max_new_tokens": max_new_tokens, | |
"top_p": top_p, | |
"repetition_penalty": repetition_penalty, | |
"do_sample": True, | |
"seed": 42, | |
} | |
formatted_prompt = format_prompt(prompt, "hf") | |
print("FORMATTED PROMPT STARTED") | |
print("----------------") | |
print(formatted_prompt) | |
print("FORMATTED PROMPT ENDED") | |
print("----------------") | |
try: | |
stream = hf_client.text_generation( | |
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False | |
) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
except Exception as e: | |
if "Too Many Requests" in str(e): | |
print("ERROR: Too many requests on Mistral client") | |
gr.Warning("Unfortunately Mistral is unable to process") | |
return "Unfortunately, I am not able to process your request now." | |
elif "Authorization header is invalid" in str(e): | |
print("Authetification error:", str(e)) | |
gr.Warning("Authentication error: HF token was either not provided or incorrect") | |
return "Authentication error" | |
else: | |
print("Unhandled Exception:", str(e)) | |
gr.Warning("Unfortunately Mistral is unable to process") | |
return "I do not know what happened, but I couldn't understand you." | |
def generate_openai( | |
prompt: str, | |
history: str, | |
temperature: float = 0.9, | |
max_new_tokens: int = 256, | |
top_p: float = 0.95, | |
repetition_penalty: float = 1.0, | |
) -> Generator[str, None, str]: | |
""" | |
Generate a sequence of tokens based on a given prompt and history using Mistral client. | |
Args: | |
prompt (str): The initial prompt for the text generation. | |
history (str): Context or history for the text generation. | |
temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9. | |
max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256. | |
top_p (float, optional): Nucleus sampling probability. Defaults to 0.95. | |
repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0. | |
Returns: | |
Generator[str, None, str]: A generator yielding chunks of generated text. | |
Returns a final string if an error occurs. | |
""" | |
temperature = max(float(temperature), 1e-2) # Ensure temperature isn't too low | |
top_p = float(top_p) | |
generate_kwargs = { | |
"temperature": temperature, | |
"max_tokens": max_new_tokens, | |
"top_p": top_p, | |
"frequency_penalty": max(-2.0, min(repetition_penalty, 2.0)), | |
} | |
formatted_prompt = format_prompt(prompt, "openai") | |
try: | |
stream = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo-0301", messages=formatted_prompt, **generate_kwargs, stream=True | |
) | |
output = "" | |
for chunk in stream: | |
output += chunk.choices[0].delta.get("content", "") | |
yield output | |
except Exception as e: | |
if "Too Many Requests" in str(e): | |
print("ERROR: Too many requests on OpenAI client") | |
gr.Warning("Unfortunately OpenAI is unable to process") | |
return "Unfortunately, I am not able to process your request now." | |
elif "You didn't provide an API key" in str(e): | |
print("Authetification error:", str(e)) | |
gr.Warning("Authentication error: OpenAI key was either not provided or incorrect") | |
return "Authentication error" | |
else: | |
print("Unhandled Exception:", str(e)) | |
gr.Warning("Unfortunately OpenAI is unable to process") | |
return "I do not know what happened, but I couldn't understand you." | |