Spaces:
Runtime error
Runtime error
| # created with great guidance from https://github.com/NimaBoscarino | |
| import os | |
| import gradio as gr | |
| import kornia as K | |
| from kornia.core import Tensor | |
| import torch | |
| def filters(file, box_blur, blur_pool2d, gaussian_blur2d, max_blur_pool2d, median_blur): | |
| """ | |
| Apply a series of image filters to the input image. | |
| """ | |
| # Handle filepath string and file object | |
| if isinstance(file, str): | |
| filepath = file | |
| else: | |
| filepath = file.name | |
| # Check if file exists | |
| if not os.path.exists(filepath): | |
| raise ValueError(f"File not found: {filepath}") | |
| # load the image using the rust backend | |
| img: Tensor = K.io.load_image(filepath, K.io.ImageLoadType.RGB32) | |
| img = img[None] # 1xCxHxW / fp32 / [0, 1] | |
| # apply tensor image enhancement | |
| x_out: Tensor = K.filters.box_blur(img, (int(box_blur), int(box_blur))) | |
| x_out = K.filters.blur_pool2d(x_out, int(blur_pool2d)) | |
| x_out = K.filters.gaussian_blur2d(x_out, | |
| (int(gaussian_blur2d), int(gaussian_blur2d)), | |
| (float(gaussian_blur2d), float(gaussian_blur2d))) | |
| x_out = K.filters.max_blur_pool2d(x_out, int(max_blur_pool2d)) | |
| x_out = K.filters.median_blur(x_out, (int(median_blur), int(median_blur))) | |
| # Ensure output is in the range [0, 1] | |
| x_out = torch.clamp(x_out, 0, 1) | |
| # Convert to numpy array and scale to [0, 255] | |
| output_image = (x_out.squeeze().permute(1, 2, 0).cpu().numpy() * 255).astype('uint8') | |
| return output_image | |
| examples = [ | |
| ["examples/ninja_turtles.jpg", 1, 1, 1, 1, 1], | |
| ["examples/kitty.jpg", 1, 1, 1, 1, 1], | |
| ] | |
| demo = gr.Interface( | |
| fn=filters, | |
| inputs=[ | |
| gr.Image(type="filepath", label="Input Image"), | |
| gr.Slider(minimum=1, maximum=10, step=1, value=1, label="Box Blur"), | |
| gr.Slider(minimum=1, maximum=10, step=1, value=1, label="Blur Pool"), | |
| gr.Slider(minimum=1, maximum=21, step=2, value=1, label="Gaussian Blur"), | |
| gr.Slider(minimum=1, maximum=20, step=1, value=1, label="Max Pool"), | |
| gr.Slider(minimum=1, maximum=5, step=2, value=1, label="Median Blur"), | |
| ], | |
| outputs=gr.Image(type="numpy", label="Output Image"), | |
| examples=examples, | |
| live=True | |
| ) | |
| demo.launch() | |