Spaces:
Runtime error
Runtime error
# created with great guidance from https://github.com/NimaBoscarino | |
import os | |
import gradio as gr | |
import kornia as K | |
from kornia.core import Tensor | |
import torch | |
def filters(file, box_blur, blur_pool2d, gaussian_blur2d, max_blur_pool2d, median_blur): | |
""" | |
Apply a series of image filters to the input image. | |
""" | |
# Handle filepath string and file object | |
if isinstance(file, str): | |
filepath = file | |
else: | |
filepath = file.name | |
# Check if file exists | |
if not os.path.exists(filepath): | |
raise ValueError(f"File not found: {filepath}") | |
# load the image using the rust backend | |
img: Tensor = K.io.load_image(filepath, K.io.ImageLoadType.RGB32) | |
img = img[None] # 1xCxHxW / fp32 / [0, 1] | |
# apply tensor image enhancement | |
x_out: Tensor = K.filters.box_blur(img, (int(box_blur), int(box_blur))) | |
x_out = K.filters.blur_pool2d(x_out, int(blur_pool2d)) | |
x_out = K.filters.gaussian_blur2d(x_out, | |
(int(gaussian_blur2d), int(gaussian_blur2d)), | |
(float(gaussian_blur2d), float(gaussian_blur2d))) | |
x_out = K.filters.max_blur_pool2d(x_out, int(max_blur_pool2d)) | |
x_out = K.filters.median_blur(x_out, (int(median_blur), int(median_blur))) | |
# Ensure output is in the range [0, 1] | |
x_out = torch.clamp(x_out, 0, 1) | |
# Convert to numpy array and scale to [0, 255] | |
output_image = (x_out.squeeze().permute(1, 2, 0).cpu().numpy() * 255).astype('uint8') | |
return output_image | |
examples = [ | |
["examples/ninja_turtles.jpg", 1, 1, 1, 1, 1], | |
["examples/kitty.jpg", 1, 1, 1, 1, 1], | |
] | |
demo = gr.Interface( | |
fn=filters, | |
inputs=[ | |
gr.Image(type="filepath", label="Input Image"), | |
gr.Slider(minimum=1, maximum=10, step=1, value=1, label="Box Blur"), | |
gr.Slider(minimum=1, maximum=10, step=1, value=1, label="Blur Pool"), | |
gr.Slider(minimum=1, maximum=21, step=2, value=1, label="Gaussian Blur"), | |
gr.Slider(minimum=1, maximum=20, step=1, value=1, label="Max Pool"), | |
gr.Slider(minimum=1, maximum=5, step=2, value=1, label="Median Blur"), | |
], | |
outputs=gr.Image(type="numpy", label="Output Image"), | |
examples=examples, | |
live=True | |
) | |
demo.launch() | |