Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import os | |
| MODEL_NAME = "meta-llama/Llama-2-7b-chat" | |
| HF_TOKEN = os.getenv("API_TOKEN_2") | |
| def query_model(prompt): | |
| if not prompt or not prompt.strip(): | |
| return "Please enter a prompt." | |
| try: | |
| client = InferenceClient(model=MODEL_NAME, token=HF_TOKEN) | |
| formatted_prompt = f"<s>[INST] {prompt.strip()} [/INST]" | |
| response = client.text_generation( | |
| formatted_prompt, | |
| max_new_tokens=300, | |
| temperature=0.6, | |
| top_p=0.9, | |
| repetition_penalty=1.1, | |
| do_sample=True, | |
| return_full_text=False | |
| ) | |
| return response if response else "(No response from model.)" | |
| except Exception as e: | |
| return f"Error: {str(e)}\n\nThis can happen if the model is gated, requires a Hugging Face token, or you need to accept its terms of use on the Hugging Face website." | |
| gr.Interface( | |
| fn=query_model, | |
| inputs=gr.Textbox(lines=4, label="Enter your prompt:"), | |
| outputs=gr.Textbox(lines=10, label="Model Response"), | |
| title="Simple Mistral-7B-Instruct Demo", | |
| description="Enter a prompt and get a response from mistralai/Mistral-7B-Instruct-v0.1." | |
| ).launch() | |