| from fastai.basics import * | |
| from fastai.vision import models | |
| from fastai.vision.all import * | |
| from fastai.metrics import * | |
| from fastai.data.all import * | |
| from fastai.callback import * | |
| from pathlib import Path | |
| import random | |
| import torchvision.transforms as transforms | |
| import PIL | |
| import gradio as gr | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model = torch.jit.load("unet.pth") | |
| model = model.cpu() | |
| model.eval() | |
| def transform_image(image): | |
| my_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]) | |
| return my_transforms(image).unsqueeze(0).to(device) | |
| def predict(img): | |
| img = PILImage.create(img) | |
| image = transforms.Resize((480,640))(img) | |
| tensor = transform_image(image=image) | |
| with torch.no_grad(): | |
| outputs = model(tensor) | |
| outputs = torch.argmax(outputs,1) | |
| mask = np.array(outputs.cpu()) | |
| mask[mask==0]=255 | |
| mask[mask==1]=150 | |
| mask[mask==2]=76 | |
| mask[mask==3]=25 | |
| mask[mask==4]=0 | |
| mask=np.reshape(mask,(480,640)) | |
| return Image.fromarray(mask.astype('uint8')) | |
| gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128,128)), outputs=gr.inputs.Image(), examples=['color_157.jpg','color_158.jpg']).launch(share=False) |