Spaces:
Sleeping
Sleeping
| import os | |
| import json | |
| import logging | |
| from pathlib import Path | |
| from huggingface_hub import HfApi | |
| from dotenv import load_dotenv | |
| from app.config.hf_config import HF_ORGANIZATION | |
| # Get the backend directory path | |
| BACKEND_DIR = Path(__file__).parent.parent | |
| ROOT_DIR = BACKEND_DIR.parent | |
| # Load environment variables from .env file in root directory | |
| load_dotenv(ROOT_DIR / ".env") | |
| # Configure logging | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='%(message)s' | |
| ) | |
| logger = logging.getLogger(__name__) | |
| # Initialize Hugging Face API | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| if not HF_TOKEN: | |
| raise ValueError("HF_TOKEN not found in environment variables") | |
| api = HfApi(token=HF_TOKEN) | |
| def count_evaluated_models(): | |
| """Count the number of evaluated models""" | |
| try: | |
| # Get dataset info | |
| dataset_info = api.dataset_info(repo_id=f"{HF_ORGANIZATION}/contents", repo_type="dataset") | |
| # Get file list | |
| files = api.list_repo_files(f"{HF_ORGANIZATION}/contents", repo_type="dataset") | |
| # Get last commit info | |
| commits = api.list_repo_commits(f"{HF_ORGANIZATION}/contents", repo_type="dataset") | |
| last_commit = next(commits, None) | |
| # Count lines in jsonl files | |
| total_entries = 0 | |
| for file in files: | |
| if file.endswith('.jsonl'): | |
| try: | |
| # Download file content | |
| content = api.hf_hub_download( | |
| repo_id=f"{HF_ORGANIZATION}/contents", | |
| filename=file, | |
| repo_type="dataset" | |
| ) | |
| # Count lines | |
| with open(content, 'r') as f: | |
| for _ in f: | |
| total_entries += 1 | |
| except Exception as e: | |
| logger.error(f"Error processing file {file}: {str(e)}") | |
| continue | |
| # Build response | |
| response = { | |
| "total_models": total_entries, | |
| "last_modified": last_commit.created_at if last_commit else None, | |
| "file_count": len(files), | |
| "size_bytes": dataset_info.size_in_bytes, | |
| "downloads": dataset_info.downloads | |
| } | |
| return response | |
| except Exception as e: | |
| logger.error(f"Error counting evaluated models: {str(e)}") | |
| return { | |
| "error": str(e) | |
| } | |
| def main(): | |
| """Main function to count evaluated models""" | |
| try: | |
| logger.info("\nAnalyzing evaluated models...") | |
| result = count_evaluated_models() | |
| if 'error' in result: | |
| logger.error(f"β Error: {result['error']}") | |
| else: | |
| logger.info(f"β {result['total_models']} models evaluated") | |
| logger.info(f"β {result['file_count']} files") | |
| logger.info(f"β {result['size_bytes'] / 1024:.1f} KB") | |
| logger.info(f"β {result['downloads']} downloads") | |
| if result['last_modified']: | |
| last_modified = datetime.fromisoformat(result['last_modified'].replace('Z', '+00:00')) | |
| logger.info(f"β Last modified: {last_modified.strftime('%Y-%m-%d %H:%M:%S')}") | |
| return result | |
| except Exception as e: | |
| logger.error(f"Global error: {str(e)}") | |
| return {"error": str(e)} | |
| if __name__ == "__main__": | |
| main() |