panel-extraction / kumikolib.py
yms9654's picture
add kumiko files
58da40f
import os, json, sys, tempfile, requests
import cv2 as cv
import numpy as np
from urllib.parse import urlparse
from functools import reduce
from lib.panel import Panel
from lib.debug import Debug
class NotAnImageException (Exception):
pass
class Kumiko:
options = {}
img = False
def __init__(self,options={}):
self.dbg = Debug('debug' in options and options['debug'])
for o in ['progress','rtl']:
self.options[o] = o in options and options[o]
if self.options['rtl']:
Panel.set_numbering('rtl')
self.options['min_panel_size_ratio'] = Panel.DEFAULT_MIN_PANEL_SIZE_RATIO
if 'min_panel_size_ratio' in options and options['min_panel_size_ratio']:
self.options['min_panel_size_ratio'] = options['min_panel_size_ratio']
def parse_url_list(self,urls):
if self.options['progress']:
print(len(urls),'files to download')
tempdir = tempfile.TemporaryDirectory()
i = 0
nbdigits = len(str(len(urls)))
for url in urls:
filename = 'img'+('0' * nbdigits + str(i))[-nbdigits:]
if self.options['progress']:
print('\t',url, (' -> '+filename) if urls else '')
i += 1
parts = urlparse(url)
if not parts.netloc or not parts.path:
continue
r = requests.get(url)
with open(os.path.join(tempdir.name,filename), 'wb') as f:
f.write(r.content)
return self.parse_dir(tempdir.name,urls=urls)
def parse_dir(self,directory,urls=None):
filenames = []
for filename in os.scandir(directory):
filenames.append(filename.path)
return self.parse_images(filenames,urls)
def parse_images(self,filenames=[],urls=None):
infos = []
if self.options['progress']:
print(len(filenames),'files to cut panels for')
i = -1
for filename in sorted(filenames):
i += 1
if self.options['progress']:
print("\t",urls[i] if urls else filename)
try:
infos.append(self.parse_image(filename,url=urls[i] if urls else None))
except NotAnImageException:
print("Not an image, will be ignored: {}".format(filename), file=sys.stderr)
pass # this file is not an image, will not be part of the results
return infos
def get_contours(self,gray,filename,bgcol):
thresh = None
contours = None
# White background: values below 220 will be black, the rest white
if bgcol == 'white':
ret,thresh = cv.threshold(gray,220,255,cv.THRESH_BINARY_INV)
contours, hierarchy = cv.findContours(thresh, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)[-2:]
elif bgcol == 'black':
# Black background: values above 25 will be black, the rest white
ret,thresh = cv.threshold(gray,25,255,cv.THRESH_BINARY)
contours, hierarchy = cv.findContours(thresh, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)[-2:]
else:
raise Exception('Fatal error, unknown background color: '+str(bgcol))
self.dbg.add_image(thresh,'Thresholded image, supposed {} background'.format(bgcol))
return contours
def group_small_panels(self, panels, filename):
i = 0
panels_to_add = []
while i < len(panels):
p1 = panels[i]
if not p1.is_small():
i += 1
continue
# build up a group of panels that are close to one another
big_panel = p1
grouped = [i]
for j in range(i+1, len(panels)):
p2 = panels[j]
if j == i or not p2.is_small():
continue
if p2.is_close(big_panel):
grouped.append(j)
# build up bigger panel for current group
big_panel = Panel.merge(big_panel,p2)
if len(grouped) <= 1:
del panels[i]
continue # continue from same index i, which is a new panel (previous panel at index i has just been removed)
else:
# add new grouped panel, if not small
if not big_panel.is_small():
panels_to_add.append(big_panel)
tmp_img = self.dbg.draw_panels(self.img, list(map(lambda k: panels[k], grouped)), Debug.colours['lightblue'])
tmp_img = self.dbg.draw_panels(tmp_img, [big_panel], Debug.colours['green'])
self.dbg.add_image(tmp_img, 'Group small panels')
# remove all panels in group
for k in reversed(grouped):
del panels[k]
i += 1
for p in panels_to_add:
panels.append(p)
self.dbg.add_step('Group small panels', panels)
return panels
def split_panels(self,panels):
new_panels = []
old_panels = []
for p in panels:
new = p.split()
if new != None:
old_panels.append(p)
new_panels += new
self.dbg.draw_contours(self.img, list(map(lambda n: n.polygon, new)))
for p in old_panels:
panels.remove(p)
panels += new_panels
self.dbg.add_image(self.img, 'Split contours (shown as non-red contours)')
self.dbg.add_step('Panels from split contours', panels)
panels = list(filter(lambda p: not p.is_small(), panels))
self.dbg.add_step('Exclude small panels', panels)
def deoverlap_panels(self,panels):
for i in range(len(panels)):
for j in range(len(panels)):
if panels[i] == panels[j]: continue
opanel = panels[i].overlap_panel(panels[j])
if not opanel:
continue
if opanel.w < opanel.h and panels[i].r == opanel.r:
panels[i].r = opanel.x
panels[j].x = opanel.r
continue
if opanel.w > opanel.h and panels[i].b == opanel.b:
panels[i].b = opanel.y
panels[j].y = opanel.b
continue
self.dbg.add_step('Deoverlap panels', panels)
# Merge every two panels where one contains the other
def merge_panels(self, panels):
panels_to_remove = []
for i in range(len(panels)):
for j in range(i+1,len(panels)):
if panels[i].contains(panels[j]):
panels_to_remove.append(j)
panels[i] = Panel.merge(panels[i],panels[j])
elif panels[j].contains(panels[i]):
panels_to_remove.append(i)
panels[j] = Panel.merge(panels[i],panels[j])
for i in reversed(sorted(list(set(panels_to_remove)))):
del panels[i]
self.dbg.add_step('Merge panels', panels)
# Find out actual gutters between panels
def actual_gutters(panels,func=min):
gutters_x = []
gutters_y = []
for p in panels:
left_panel = p.find_left_panel(panels)
if left_panel: gutters_x.append(p.x - left_panel.r)
top_panel = p.find_top_panel(panels)
if top_panel: gutters_y.append(p.y - top_panel.b)
if not gutters_x: gutters_x = [1]
if not gutters_y: gutters_y = [1]
return {
'x': func(gutters_x),
'y': func(gutters_y),
'r': -func(gutters_x),
'b': -func(gutters_y)
}
# Expand panels to their neighbour's edge, or page boundaries
def expand_panels(self, panels):
gutters = Kumiko.actual_gutters(panels)
for i in range(len(panels)):
for d in ['x','y','r','b']: # expand in all four directions
pcoords = {'x':panels[i].x, 'y':panels[i].y, 'r':panels[i].r, 'b':panels[i].b}
newcoord = -1
neighbour = panels[i].find_neighbour_panel(d,panels)
if neighbour:
# expand to that neighbour's edge (minus gutter)
newcoord = getattr(neighbour,{'x':'r','r':'x','y':'b','b':'y'}[d]) + gutters[d]
else:
# expand to the furthest known edge (frame around all panels)
min_panel = min(panels,key=lambda p: getattr(p,d)) if d in ['x','y'] else max(panels,key=lambda p: getattr(p,d))
newcoord = getattr(min_panel,d)
if newcoord != -1:
if d in ['r','b'] and newcoord > getattr(panels[i],d) or d in ['x','y'] and newcoord < getattr(panels[i],d):
setattr(panels[i],d,newcoord)
self.dbg.add_step('Expand panels', panels)
def parse_image(self,filename,url=None):
if isinstance(filename, np.ndarray):
self.img = filename
else:
self.img = cv.imread(filename)
if not isinstance(self.img,np.ndarray) or self.img.size == 0:
raise NotAnImageException('File {} is not an image'.format(filename))
self.dbg.add_step('Initial state', [])
self.dbg.add_image(self.img,'Input image')
size = list(self.img.shape[:2])
size.reverse() # get a [width,height] list
infos = {
# 'filename': url if url else os.path.basename(filename),
'size': size
}
Panel.img_size = size
Panel.small_panel_ratio = self.options['min_panel_size_ratio']
# get license for this file
# if os.path.isfile(filename+'.license'):
# with open(filename+'.license') as fh:
# try:
# infos['license'] = json.load(fh)
# except json.decoder.JSONDecodeError:
# print('License file {} is not a valid JSON file'.format(filename+'.license'))
# sys.exit(1)
self.gray = cv.cvtColor(self.img,cv.COLOR_BGR2GRAY)
self.dbg.add_image(self.gray,'Shades of gray')
for bgcol in ['white','black']:
res = self.parse_image_with_bgcol(infos.copy(),filename,bgcol,url)
if len(res['panels']) > 1:
return res
return res
def parse_image_with_bgcol(self,infos,filename,bgcol,url=None):
contours = self.get_contours(self.gray,filename,bgcol)
infos['background'] = bgcol
self.dbg.infos = infos.copy()
# Get (square) panels out of contours
self.dbg.contourSize = int(sum(infos['size']) / 2 * 0.004)
panels = []
# contour를 근사화하는 과정인듯.
for contour in contours:
arclength = cv.arcLength(contour,True)
epsilon = 0.001 * arclength
approx = cv.approxPolyDP(contour,epsilon,True)
self.dbg.draw_contours(self.img, [approx], Debug.colours['red'])
panels.append(Panel(polygon=approx))
self.dbg.add_image(self.img, 'Initial contours')
self.dbg.add_step('Panels from initial contours', panels)
# Group small panels that are close together, into bigger ones
panels = self.group_small_panels(panels,filename)
# See if panels can be cut into several (two non-consecutive points are close)
self.split_panels(panels)
# Merge panels that shouldn't have been split (speech bubble diving in a panel)
self.merge_panels(panels)
# splitting polygons may result in panels slightly overlapping, de-overlap them
self.deoverlap_panels(panels)
# re-filter out small panels
panels = list(filter(lambda p: not p.is_small(), panels))
self.dbg.add_step('Exclude small panels', panels)
# get actual gutters before expanding panels
actual_gutters = Kumiko.actual_gutters(panels)
infos['gutters'] = [actual_gutters['x'],actual_gutters['y']]
panels.sort() # TODO: remove when panels expansion is smarter
self.expand_panels(panels)
if len(panels) == 0:
panels.append( Panel([0,0,infos['size'][0],infos['size'][1]]) );
# Number panels comics-wise (ltr/rtl)
panels.sort()
# Simplify panels back to lists (x,y,w,h)
panels = list(map(lambda p: p.to_xywh(), panels))
infos['panels'] = panels
return infos
def draw_rect(self, image, info):
panels = info['panels']
for panel in panels:
cv.rectangle(image, (panel[0], panel[1]), (panel[0]+panel[2], panel[1]+panel[3]), (0, 255, 0), 3)
return image
def vconcat_resize_min(self, im_list, interpolation=cv.INTER_CUBIC):
w_min = min(im.shape[1] for im in im_list)
im_list_resize = [cv.resize(im, (w_min, int(im.shape[0] * w_min / im.shape[1])), interpolation=interpolation)
for im in im_list]
return cv.vconcat(im_list_resize)
def vconcat_resize_max(self, im_list, interpolation=cv.INTER_CUBIC):
w_resize = max(im.shape[1] for im in im_list)
im_list_resize = [cv.resize(im, (w_resize, int(im.shape[0] * w_resize / im.shape[1])), interpolation=interpolation)
for im in im_list]
return cv.vconcat(im_list_resize)
def cut_rect(self, image, info, margin_height):
panels = info['panels']
ret = None
for panel in panels:
x = panel[0]
y = panel[1]
w = panel[2]
h = panel[3]
margin = np.zeros([margin_height, w, 3], dtype=np.uint8)
margin.fill(255) # fill white
if ret is None:
ret = image[y: y+h, x: x+w]
else:
ret = self.vconcat_resize_max([ret, margin, image[y: y+h, x: x+w]])
return ret