Update app.py
Browse files
app.py
CHANGED
@@ -16,32 +16,29 @@ tokenizer = MT5TokenizerFast.from_pretrained(
|
|
16 |
)
|
17 |
|
18 |
def predict(text):
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
max_length=1000,
|
28 |
-
repetition_penalty=3.0, #default = 2.5
|
29 |
-
length_penalty=1.0,
|
30 |
-
early_stopping=True,
|
31 |
-
top_p=50, #default 50
|
32 |
-
top_k=20, #default 20
|
33 |
-
num_return_sequences=3,
|
34 |
)
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
g,
|
39 |
-
skip_special_tokens=True,
|
40 |
-
clean_up_tokenization_spaces=True,
|
41 |
-
)
|
42 |
-
for g in generated_ids
|
43 |
-
]
|
44 |
-
return preds
|
45 |
|
46 |
# text_to_predict = predict(text)
|
47 |
# predicted = ['Q: ' + text for text in predict(text_to_predict)]
|
|
|
16 |
)
|
17 |
|
18 |
def predict(text):
|
19 |
+
# with torch.no_grad():
|
20 |
+
input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
|
21 |
+
generated_ids = model.generate(
|
22 |
+
input_ids=input_ids,
|
23 |
+
num_beams=5,
|
24 |
+
max_length=1000,
|
25 |
+
repetition_penalty=3.0, #default = 2.5
|
26 |
+
length_penalty=1.0,
|
27 |
+
early_stopping=True,
|
28 |
+
top_p=50, #default 50
|
29 |
+
top_k=20, #default 20
|
30 |
+
num_return_sequences=3,
|
31 |
+
)
|
32 |
|
33 |
+
preds = [
|
34 |
+
tokenizer.decode(
|
35 |
+
g,
|
36 |
+
skip_special_tokens=True,
|
37 |
+
clean_up_tokenization_spaces=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
)
|
39 |
+
for g in generated_ids
|
40 |
+
]
|
41 |
+
return preds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# text_to_predict = predict(text)
|
44 |
# predicted = ['Q: ' + text for text in predict(text_to_predict)]
|