Spaces:
Runtime error
Runtime error
""" | |
This code is based on: | |
[1] FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting, ICCV 2021 | |
https://github.com/ruiliu-ai/FuseFormer | |
[2] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 | |
https://github.com/yitu-opensource/T2T-ViT | |
[3] Focal Self-attention for Local-Global Interactions in Vision Transformers, NeurIPS 2021 | |
https://github.com/microsoft/Focal-Transformer | |
""" | |
import math | |
from functools import reduce | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class SoftSplit(nn.Module): | |
def __init__(self, channel, hidden, kernel_size, stride, padding, | |
t2t_param): | |
super(SoftSplit, self).__init__() | |
self.kernel_size = kernel_size | |
self.t2t = nn.Unfold(kernel_size=kernel_size, | |
stride=stride, | |
padding=padding) | |
c_in = reduce((lambda x, y: x * y), kernel_size) * channel | |
self.embedding = nn.Linear(c_in, hidden) | |
self.t2t_param = t2t_param | |
def forward(self, x, b, output_size): | |
f_h = int((output_size[0] + 2 * self.t2t_param['padding'][0] - | |
(self.t2t_param['kernel_size'][0] - 1) - 1) / | |
self.t2t_param['stride'][0] + 1) | |
f_w = int((output_size[1] + 2 * self.t2t_param['padding'][1] - | |
(self.t2t_param['kernel_size'][1] - 1) - 1) / | |
self.t2t_param['stride'][1] + 1) | |
feat = self.t2t(x) | |
feat = feat.permute(0, 2, 1) | |
# feat shape [b*t, num_vec, ks*ks*c] | |
feat = self.embedding(feat) | |
# feat shape after embedding [b, t*num_vec, hidden] | |
feat = feat.view(b, -1, f_h, f_w, feat.size(2)) | |
return feat | |
class SoftComp(nn.Module): | |
def __init__(self, channel, hidden, kernel_size, stride, padding): | |
super(SoftComp, self).__init__() | |
self.relu = nn.LeakyReLU(0.2, inplace=True) | |
c_out = reduce((lambda x, y: x * y), kernel_size) * channel | |
self.embedding = nn.Linear(hidden, c_out) | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.padding = padding | |
self.bias_conv = nn.Conv2d(channel, | |
channel, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
# TODO upsample conv | |
# self.bias_conv = nn.Conv2d() | |
# self.bias = nn.Parameter(torch.zeros((channel, h, w), dtype=torch.float32), requires_grad=True) | |
def forward(self, x, t, output_size): | |
b_, _, _, _, c_ = x.shape | |
x = x.view(b_, -1, c_) | |
feat = self.embedding(x) | |
b, _, c = feat.size() | |
feat = feat.view(b * t, -1, c).permute(0, 2, 1) | |
feat = F.fold(feat, | |
output_size=output_size, | |
kernel_size=self.kernel_size, | |
stride=self.stride, | |
padding=self.padding) | |
feat = self.bias_conv(feat) | |
return feat | |
class FusionFeedForward(nn.Module): | |
def __init__(self, d_model, n_vecs=None, t2t_params=None): | |
super(FusionFeedForward, self).__init__() | |
# We set d_ff as a default to 1960 | |
hd = 1960 | |
self.conv1 = nn.Sequential(nn.Linear(d_model, hd)) | |
self.conv2 = nn.Sequential(nn.GELU(), nn.Linear(hd, d_model)) | |
assert t2t_params is not None and n_vecs is not None | |
self.t2t_params = t2t_params | |
def forward(self, x, output_size): | |
n_vecs = 1 | |
for i, d in enumerate(self.t2t_params['kernel_size']): | |
n_vecs *= int((output_size[i] + 2 * self.t2t_params['padding'][i] - | |
(d - 1) - 1) / self.t2t_params['stride'][i] + 1) | |
x = self.conv1(x) | |
b, n, c = x.size() | |
normalizer = x.new_ones(b, n, 49).view(-1, n_vecs, 49).permute(0, 2, 1) | |
normalizer = F.fold(normalizer, | |
output_size=output_size, | |
kernel_size=self.t2t_params['kernel_size'], | |
padding=self.t2t_params['padding'], | |
stride=self.t2t_params['stride']) | |
x = F.fold(x.view(-1, n_vecs, c).permute(0, 2, 1), | |
output_size=output_size, | |
kernel_size=self.t2t_params['kernel_size'], | |
padding=self.t2t_params['padding'], | |
stride=self.t2t_params['stride']) | |
x = F.unfold(x / normalizer, | |
kernel_size=self.t2t_params['kernel_size'], | |
padding=self.t2t_params['padding'], | |
stride=self.t2t_params['stride']).permute( | |
0, 2, 1).contiguous().view(b, n, c) | |
x = self.conv2(x) | |
return x | |
def window_partition(x, window_size): | |
""" | |
Args: | |
x: shape is (B, T, H, W, C) | |
window_size (tuple[int]): window size | |
Returns: | |
windows: (B*num_windows, T*window_size*window_size, C) | |
""" | |
B, T, H, W, C = x.shape | |
x = x.view(B, T, H // window_size[0], window_size[0], W // window_size[1], | |
window_size[1], C) | |
windows = x.permute(0, 2, 4, 1, 3, 5, 6).contiguous().view( | |
-1, T * window_size[0] * window_size[1], C) | |
return windows | |
def window_partition_noreshape(x, window_size): | |
""" | |
Args: | |
x: shape is (B, T, H, W, C) | |
window_size (tuple[int]): window size | |
Returns: | |
windows: (B, num_windows_h, num_windows_w, T, window_size, window_size, C) | |
""" | |
B, T, H, W, C = x.shape | |
x = x.view(B, T, H // window_size[0], window_size[0], W // window_size[1], | |
window_size[1], C) | |
windows = x.permute(0, 2, 4, 1, 3, 5, 6).contiguous() | |
return windows | |
def window_reverse(windows, window_size, T, H, W): | |
""" | |
Args: | |
windows: shape is (num_windows*B, T, window_size, window_size, C) | |
window_size (tuple[int]): Window size | |
T (int): Temporal length of video | |
H (int): Height of image | |
W (int): Width of image | |
Returns: | |
x: (B, T, H, W, C) | |
""" | |
B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1])) | |
x = windows.view(B, H // window_size[0], W // window_size[1], T, | |
window_size[0], window_size[1], -1) | |
x = x.permute(0, 3, 1, 4, 2, 5, 6).contiguous().view(B, T, H, W, -1) | |
return x | |
class WindowAttention(nn.Module): | |
"""Temporal focal window attention | |
""" | |
def __init__(self, dim, expand_size, window_size, focal_window, | |
focal_level, num_heads, qkv_bias, pool_method): | |
super().__init__() | |
self.dim = dim | |
self.expand_size = expand_size | |
self.window_size = window_size # Wh, Ww | |
self.pool_method = pool_method | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.focal_level = focal_level | |
self.focal_window = focal_window | |
if any(i > 0 for i in self.expand_size) and focal_level > 0: | |
# get mask for rolled k and rolled v | |
mask_tl = torch.ones(self.window_size[0], self.window_size[1]) | |
mask_tl[:-self.expand_size[0], :-self.expand_size[1]] = 0 | |
mask_tr = torch.ones(self.window_size[0], self.window_size[1]) | |
mask_tr[:-self.expand_size[0], self.expand_size[1]:] = 0 | |
mask_bl = torch.ones(self.window_size[0], self.window_size[1]) | |
mask_bl[self.expand_size[0]:, :-self.expand_size[1]] = 0 | |
mask_br = torch.ones(self.window_size[0], self.window_size[1]) | |
mask_br[self.expand_size[0]:, self.expand_size[1]:] = 0 | |
mask_rolled = torch.stack((mask_tl, mask_tr, mask_bl, mask_br), | |
0).flatten(0) | |
self.register_buffer("valid_ind_rolled", | |
mask_rolled.nonzero(as_tuple=False).view(-1)) | |
if pool_method != "none" and focal_level > 1: | |
self.unfolds = nn.ModuleList() | |
# build relative position bias between local patch and pooled windows | |
for k in range(focal_level - 1): | |
stride = 2**k | |
kernel_size = tuple(2 * (i // 2) + 2**k + (2**k - 1) | |
for i in self.focal_window) | |
# define unfolding operations | |
self.unfolds += [ | |
nn.Unfold(kernel_size=kernel_size, | |
stride=stride, | |
padding=tuple(i // 2 for i in kernel_size)) | |
] | |
# define unfolding index for focal_level > 0 | |
if k > 0: | |
mask = torch.zeros(kernel_size) | |
mask[(2**k) - 1:, (2**k) - 1:] = 1 | |
self.register_buffer( | |
"valid_ind_unfold_{}".format(k), | |
mask.flatten(0).nonzero(as_tuple=False).view(-1)) | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.proj = nn.Linear(dim, dim) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x_all, mask_all=None): | |
""" | |
Args: | |
x: input features with shape of (B, T, Wh, Ww, C) | |
mask: (0/-inf) mask with shape of (num_windows, T*Wh*Ww, T*Wh*Ww) or None | |
output: (nW*B, Wh*Ww, C) | |
""" | |
x = x_all[0] | |
B, T, nH, nW, C = x.shape | |
qkv = self.qkv(x).reshape(B, T, nH, nW, 3, | |
C).permute(4, 0, 1, 2, 3, 5).contiguous() | |
q, k, v = qkv[0], qkv[1], qkv[2] # B, T, nH, nW, C | |
# partition q map | |
(q_windows, k_windows, v_windows) = map( | |
lambda t: window_partition(t, self.window_size).view( | |
-1, T, self.window_size[0] * self.window_size[1], self. | |
num_heads, C // self.num_heads).permute(0, 3, 1, 2, 4). | |
contiguous().view(-1, self.num_heads, T * self.window_size[ | |
0] * self.window_size[1], C // self.num_heads), (q, k, v)) | |
# q(k/v)_windows shape : [16, 4, 225, 128] | |
if any(i > 0 for i in self.expand_size) and self.focal_level > 0: | |
(k_tl, v_tl) = map( | |
lambda t: torch.roll(t, | |
shifts=(-self.expand_size[0], -self. | |
expand_size[1]), | |
dims=(2, 3)), (k, v)) | |
(k_tr, v_tr) = map( | |
lambda t: torch.roll(t, | |
shifts=(-self.expand_size[0], self. | |
expand_size[1]), | |
dims=(2, 3)), (k, v)) | |
(k_bl, v_bl) = map( | |
lambda t: torch.roll(t, | |
shifts=(self.expand_size[0], -self. | |
expand_size[1]), | |
dims=(2, 3)), (k, v)) | |
(k_br, v_br) = map( | |
lambda t: torch.roll(t, | |
shifts=(self.expand_size[0], self. | |
expand_size[1]), | |
dims=(2, 3)), (k, v)) | |
(k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows) = map( | |
lambda t: window_partition(t, self.window_size).view( | |
-1, T, self.window_size[0] * self.window_size[1], self. | |
num_heads, C // self.num_heads), (k_tl, k_tr, k_bl, k_br)) | |
(v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows) = map( | |
lambda t: window_partition(t, self.window_size).view( | |
-1, T, self.window_size[0] * self.window_size[1], self. | |
num_heads, C // self.num_heads), (v_tl, v_tr, v_bl, v_br)) | |
k_rolled = torch.cat( | |
(k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows), | |
2).permute(0, 3, 1, 2, 4).contiguous() | |
v_rolled = torch.cat( | |
(v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows), | |
2).permute(0, 3, 1, 2, 4).contiguous() | |
# mask out tokens in current window | |
k_rolled = k_rolled[:, :, :, self.valid_ind_rolled] | |
v_rolled = v_rolled[:, :, :, self.valid_ind_rolled] | |
temp_N = k_rolled.shape[3] | |
k_rolled = k_rolled.view(-1, self.num_heads, T * temp_N, | |
C // self.num_heads) | |
v_rolled = v_rolled.view(-1, self.num_heads, T * temp_N, | |
C // self.num_heads) | |
k_rolled = torch.cat((k_windows, k_rolled), 2) | |
v_rolled = torch.cat((v_windows, v_rolled), 2) | |
else: | |
k_rolled = k_windows | |
v_rolled = v_windows | |
# q(k/v)_windows shape : [16, 4, 225, 128] | |
# k_rolled.shape : [16, 4, 5, 165, 128] | |
# ideal expanded window size 153 ((5+2*2)*(9+2*4)) | |
# k_windows=45 expand_window=108 overlap_window=12 (since expand_size < window_size / 2) | |
if self.pool_method != "none" and self.focal_level > 1: | |
k_pooled = [] | |
v_pooled = [] | |
for k in range(self.focal_level - 1): | |
stride = 2**k | |
# B, T, nWh, nWw, C | |
x_window_pooled = x_all[k + 1].permute(0, 3, 1, 2, | |
4).contiguous() | |
nWh, nWw = x_window_pooled.shape[2:4] | |
# generate mask for pooled windows | |
mask = x_window_pooled.new(T, nWh, nWw).fill_(1) | |
# unfold mask: [nWh*nWw//s//s, k*k, 1] | |
unfolded_mask = self.unfolds[k](mask.unsqueeze(1)).view( | |
1, T, self.unfolds[k].kernel_size[0], self.unfolds[k].kernel_size[1], -1).permute(4, 1, 2, 3, 0).contiguous().\ | |
view(nWh*nWw // stride // stride, -1, 1) | |
if k > 0: | |
valid_ind_unfold_k = getattr( | |
self, "valid_ind_unfold_{}".format(k)) | |
unfolded_mask = unfolded_mask[:, valid_ind_unfold_k] | |
x_window_masks = unfolded_mask.flatten(1).unsqueeze(0) | |
x_window_masks = x_window_masks.masked_fill( | |
x_window_masks == 0, | |
float(-100.0)).masked_fill(x_window_masks > 0, float(0.0)) | |
mask_all[k + 1] = x_window_masks | |
# generate k and v for pooled windows | |
qkv_pooled = self.qkv(x_window_pooled).reshape( | |
B, T, nWh, nWw, 3, C).permute(4, 0, 1, 5, 2, | |
3).view(3, -1, C, nWh, | |
nWw).contiguous() | |
# B*T, C, nWh, nWw | |
k_pooled_k, v_pooled_k = qkv_pooled[1], qkv_pooled[2] | |
# k_pooled_k shape: [5, 512, 4, 4] | |
# self.unfolds[k](k_pooled_k) shape: [5, 23040 (512 * 5 * 9 ), 16] | |
(k_pooled_k, v_pooled_k) = map( | |
lambda t: self.unfolds[k] | |
(t).view(B, T, C, self.unfolds[k].kernel_size[0], self. | |
unfolds[k].kernel_size[1], -1) | |
.permute(0, 5, 1, 3, 4, 2).contiguous().view( | |
-1, T, self.unfolds[k].kernel_size[0] * self.unfolds[ | |
k].kernel_size[1], self.num_heads, C // self. | |
num_heads).permute(0, 3, 1, 2, 4).contiguous(), | |
# (B x (nH*nW)) x nHeads x T x (unfold_wsize x unfold_wsize) x head_dim | |
(k_pooled_k, v_pooled_k)) | |
# k_pooled_k shape : [16, 4, 5, 45, 128] | |
# select valid unfolding index | |
if k > 0: | |
(k_pooled_k, v_pooled_k) = map( | |
lambda t: t[:, :, :, valid_ind_unfold_k], | |
(k_pooled_k, v_pooled_k)) | |
k_pooled_k = k_pooled_k.view( | |
-1, self.num_heads, T * self.unfolds[k].kernel_size[0] * | |
self.unfolds[k].kernel_size[1], C // self.num_heads) | |
v_pooled_k = v_pooled_k.view( | |
-1, self.num_heads, T * self.unfolds[k].kernel_size[0] * | |
self.unfolds[k].kernel_size[1], C // self.num_heads) | |
k_pooled += [k_pooled_k] | |
v_pooled += [v_pooled_k] | |
# k_all (v_all) shape : [16, 4, 5 * 210, 128] | |
k_all = torch.cat([k_rolled] + k_pooled, 2) | |
v_all = torch.cat([v_rolled] + v_pooled, 2) | |
else: | |
k_all = k_rolled | |
v_all = v_rolled | |
N = k_all.shape[-2] | |
q_windows = q_windows * self.scale | |
# B*nW, nHead, T*window_size*window_size, T*focal_window_size*focal_window_size | |
attn = (q_windows @ k_all.transpose(-2, -1)) | |
# T * 45 | |
window_area = T * self.window_size[0] * self.window_size[1] | |
# T * 165 | |
window_area_rolled = k_rolled.shape[2] | |
if self.pool_method != "none" and self.focal_level > 1: | |
offset = window_area_rolled | |
for k in range(self.focal_level - 1): | |
# add attentional mask | |
# mask_all[1] shape [1, 16, T * 45] | |
bias = tuple((i + 2**k - 1) for i in self.focal_window) | |
if mask_all[k + 1] is not None: | |
attn[:, :, :window_area, offset:(offset + (T*bias[0]*bias[1]))] = \ | |
attn[:, :, :window_area, offset:(offset + (T*bias[0]*bias[1]))] + \ | |
mask_all[k+1][:, :, None, None, :].repeat( | |
attn.shape[0] // mask_all[k+1].shape[1], 1, 1, 1, 1).view(-1, 1, 1, mask_all[k+1].shape[-1]) | |
offset += T * bias[0] * bias[1] | |
if mask_all[0] is not None: | |
nW = mask_all[0].shape[0] | |
attn = attn.view(attn.shape[0] // nW, nW, self.num_heads, | |
window_area, N) | |
attn[:, :, :, :, : | |
window_area] = attn[:, :, :, :, :window_area] + mask_all[0][ | |
None, :, None, :, :] | |
attn = attn.view(-1, self.num_heads, window_area, N) | |
attn = self.softmax(attn) | |
else: | |
attn = self.softmax(attn) | |
x = (attn @ v_all).transpose(1, 2).reshape(attn.shape[0], window_area, | |
C) | |
x = self.proj(x) | |
return x | |
class TemporalFocalTransformerBlock(nn.Module): | |
r""" Temporal Focal Transformer Block. | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
window_size (tuple[int]): Window size. | |
shift_size (int): Shift size for SW-MSA. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
focal_level (int): The number level of focal window. | |
focal_window (int): Window size of each focal window. | |
n_vecs (int): Required for F3N. | |
t2t_params (int): T2T parameters for F3N. | |
""" | |
def __init__(self, | |
dim, | |
num_heads, | |
window_size=(5, 9), | |
mlp_ratio=4., | |
qkv_bias=True, | |
pool_method="fc", | |
focal_level=2, | |
focal_window=(5, 9), | |
norm_layer=nn.LayerNorm, | |
n_vecs=None, | |
t2t_params=None): | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.expand_size = tuple(i // 2 for i in window_size) # TODO | |
self.mlp_ratio = mlp_ratio | |
self.pool_method = pool_method | |
self.focal_level = focal_level | |
self.focal_window = focal_window | |
self.window_size_glo = self.window_size | |
self.pool_layers = nn.ModuleList() | |
if self.pool_method != "none": | |
for k in range(self.focal_level - 1): | |
window_size_glo = tuple( | |
math.floor(i / (2**k)) for i in self.window_size_glo) | |
self.pool_layers.append( | |
nn.Linear(window_size_glo[0] * window_size_glo[1], 1)) | |
self.pool_layers[-1].weight.data.fill_( | |
1. / (window_size_glo[0] * window_size_glo[1])) | |
self.pool_layers[-1].bias.data.fill_(0) | |
self.norm1 = norm_layer(dim) | |
self.attn = WindowAttention(dim, | |
expand_size=self.expand_size, | |
window_size=self.window_size, | |
focal_window=focal_window, | |
focal_level=focal_level, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
pool_method=pool_method) | |
self.norm2 = norm_layer(dim) | |
self.mlp = FusionFeedForward(dim, n_vecs=n_vecs, t2t_params=t2t_params) | |
def forward(self, x): | |
output_size = x[1] | |
x = x[0] | |
B, T, H, W, C = x.shape | |
shortcut = x | |
x = self.norm1(x) | |
shifted_x = x | |
x_windows_all = [shifted_x] | |
x_window_masks_all = [None] | |
# partition windows tuple(i // 2 for i in window_size) | |
if self.focal_level > 1 and self.pool_method != "none": | |
# if we add coarser granularity and the pool method is not none | |
for k in range(self.focal_level - 1): | |
window_size_glo = tuple( | |
math.floor(i / (2**k)) for i in self.window_size_glo) | |
pooled_h = math.ceil(H / window_size_glo[0]) * (2**k) | |
pooled_w = math.ceil(W / window_size_glo[1]) * (2**k) | |
H_pool = pooled_h * window_size_glo[0] | |
W_pool = pooled_w * window_size_glo[1] | |
x_level_k = shifted_x | |
# trim or pad shifted_x depending on the required size | |
if H > H_pool: | |
trim_t = (H - H_pool) // 2 | |
trim_b = H - H_pool - trim_t | |
x_level_k = x_level_k[:, :, trim_t:-trim_b] | |
elif H < H_pool: | |
pad_t = (H_pool - H) // 2 | |
pad_b = H_pool - H - pad_t | |
x_level_k = F.pad(x_level_k, (0, 0, 0, 0, pad_t, pad_b)) | |
if W > W_pool: | |
trim_l = (W - W_pool) // 2 | |
trim_r = W - W_pool - trim_l | |
x_level_k = x_level_k[:, :, :, trim_l:-trim_r] | |
elif W < W_pool: | |
pad_l = (W_pool - W) // 2 | |
pad_r = W_pool - W - pad_l | |
x_level_k = F.pad(x_level_k, (0, 0, pad_l, pad_r)) | |
x_windows_noreshape = window_partition_noreshape( | |
x_level_k.contiguous(), window_size_glo | |
) # B, nw, nw, T, window_size, window_size, C | |
nWh, nWw = x_windows_noreshape.shape[1:3] | |
x_windows_noreshape = x_windows_noreshape.view( | |
B, nWh, nWw, T, window_size_glo[0] * window_size_glo[1], | |
C).transpose(4, 5) # B, nWh, nWw, T, C, wsize**2 | |
x_windows_pooled = self.pool_layers[k]( | |
x_windows_noreshape).flatten(-2) # B, nWh, nWw, T, C | |
x_windows_all += [x_windows_pooled] | |
x_window_masks_all += [None] | |
# nW*B, T*window_size*window_size, C | |
attn_windows = self.attn(x_windows_all, mask_all=x_window_masks_all) | |
# merge windows | |
attn_windows = attn_windows.view(-1, T, self.window_size[0], | |
self.window_size[1], C) | |
shifted_x = window_reverse(attn_windows, self.window_size, T, H, | |
W) # B T H' W' C | |
# FFN | |
x = shortcut + shifted_x | |
y = self.norm2(x) | |
x = x + self.mlp(y.view(B, T * H * W, C), output_size).view( | |
B, T, H, W, C) | |
return x, output_size | |