Track-Anything / inpainter /model /modules /tfocal_transformer_hq.py
watchtowerss's picture
requirement fix
53a8438
raw
history blame
24.4 kB
"""
This code is based on:
[1] FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting, ICCV 2021
https://github.com/ruiliu-ai/FuseFormer
[2] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021
https://github.com/yitu-opensource/T2T-ViT
[3] Focal Self-attention for Local-Global Interactions in Vision Transformers, NeurIPS 2021
https://github.com/microsoft/Focal-Transformer
"""
import math
from functools import reduce
import torch
import torch.nn as nn
import torch.nn.functional as F
class SoftSplit(nn.Module):
def __init__(self, channel, hidden, kernel_size, stride, padding,
t2t_param):
super(SoftSplit, self).__init__()
self.kernel_size = kernel_size
self.t2t = nn.Unfold(kernel_size=kernel_size,
stride=stride,
padding=padding)
c_in = reduce((lambda x, y: x * y), kernel_size) * channel
self.embedding = nn.Linear(c_in, hidden)
self.t2t_param = t2t_param
def forward(self, x, b, output_size):
f_h = int((output_size[0] + 2 * self.t2t_param['padding'][0] -
(self.t2t_param['kernel_size'][0] - 1) - 1) /
self.t2t_param['stride'][0] + 1)
f_w = int((output_size[1] + 2 * self.t2t_param['padding'][1] -
(self.t2t_param['kernel_size'][1] - 1) - 1) /
self.t2t_param['stride'][1] + 1)
feat = self.t2t(x)
feat = feat.permute(0, 2, 1)
# feat shape [b*t, num_vec, ks*ks*c]
feat = self.embedding(feat)
# feat shape after embedding [b, t*num_vec, hidden]
feat = feat.view(b, -1, f_h, f_w, feat.size(2))
return feat
class SoftComp(nn.Module):
def __init__(self, channel, hidden, kernel_size, stride, padding):
super(SoftComp, self).__init__()
self.relu = nn.LeakyReLU(0.2, inplace=True)
c_out = reduce((lambda x, y: x * y), kernel_size) * channel
self.embedding = nn.Linear(hidden, c_out)
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.bias_conv = nn.Conv2d(channel,
channel,
kernel_size=3,
stride=1,
padding=1)
# TODO upsample conv
# self.bias_conv = nn.Conv2d()
# self.bias = nn.Parameter(torch.zeros((channel, h, w), dtype=torch.float32), requires_grad=True)
def forward(self, x, t, output_size):
b_, _, _, _, c_ = x.shape
x = x.view(b_, -1, c_)
feat = self.embedding(x)
b, _, c = feat.size()
feat = feat.view(b * t, -1, c).permute(0, 2, 1)
feat = F.fold(feat,
output_size=output_size,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding)
feat = self.bias_conv(feat)
return feat
class FusionFeedForward(nn.Module):
def __init__(self, d_model, n_vecs=None, t2t_params=None):
super(FusionFeedForward, self).__init__()
# We set d_ff as a default to 1960
hd = 1960
self.conv1 = nn.Sequential(nn.Linear(d_model, hd))
self.conv2 = nn.Sequential(nn.GELU(), nn.Linear(hd, d_model))
assert t2t_params is not None and n_vecs is not None
self.t2t_params = t2t_params
def forward(self, x, output_size):
n_vecs = 1
for i, d in enumerate(self.t2t_params['kernel_size']):
n_vecs *= int((output_size[i] + 2 * self.t2t_params['padding'][i] -
(d - 1) - 1) / self.t2t_params['stride'][i] + 1)
x = self.conv1(x)
b, n, c = x.size()
normalizer = x.new_ones(b, n, 49).view(-1, n_vecs, 49).permute(0, 2, 1)
normalizer = F.fold(normalizer,
output_size=output_size,
kernel_size=self.t2t_params['kernel_size'],
padding=self.t2t_params['padding'],
stride=self.t2t_params['stride'])
x = F.fold(x.view(-1, n_vecs, c).permute(0, 2, 1),
output_size=output_size,
kernel_size=self.t2t_params['kernel_size'],
padding=self.t2t_params['padding'],
stride=self.t2t_params['stride'])
x = F.unfold(x / normalizer,
kernel_size=self.t2t_params['kernel_size'],
padding=self.t2t_params['padding'],
stride=self.t2t_params['stride']).permute(
0, 2, 1).contiguous().view(b, n, c)
x = self.conv2(x)
return x
def window_partition(x, window_size):
"""
Args:
x: shape is (B, T, H, W, C)
window_size (tuple[int]): window size
Returns:
windows: (B*num_windows, T*window_size*window_size, C)
"""
B, T, H, W, C = x.shape
x = x.view(B, T, H // window_size[0], window_size[0], W // window_size[1],
window_size[1], C)
windows = x.permute(0, 2, 4, 1, 3, 5, 6).contiguous().view(
-1, T * window_size[0] * window_size[1], C)
return windows
def window_partition_noreshape(x, window_size):
"""
Args:
x: shape is (B, T, H, W, C)
window_size (tuple[int]): window size
Returns:
windows: (B, num_windows_h, num_windows_w, T, window_size, window_size, C)
"""
B, T, H, W, C = x.shape
x = x.view(B, T, H // window_size[0], window_size[0], W // window_size[1],
window_size[1], C)
windows = x.permute(0, 2, 4, 1, 3, 5, 6).contiguous()
return windows
def window_reverse(windows, window_size, T, H, W):
"""
Args:
windows: shape is (num_windows*B, T, window_size, window_size, C)
window_size (tuple[int]): Window size
T (int): Temporal length of video
H (int): Height of image
W (int): Width of image
Returns:
x: (B, T, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1]))
x = windows.view(B, H // window_size[0], W // window_size[1], T,
window_size[0], window_size[1], -1)
x = x.permute(0, 3, 1, 4, 2, 5, 6).contiguous().view(B, T, H, W, -1)
return x
class WindowAttention(nn.Module):
"""Temporal focal window attention
"""
def __init__(self, dim, expand_size, window_size, focal_window,
focal_level, num_heads, qkv_bias, pool_method):
super().__init__()
self.dim = dim
self.expand_size = expand_size
self.window_size = window_size # Wh, Ww
self.pool_method = pool_method
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.focal_level = focal_level
self.focal_window = focal_window
if any(i > 0 for i in self.expand_size) and focal_level > 0:
# get mask for rolled k and rolled v
mask_tl = torch.ones(self.window_size[0], self.window_size[1])
mask_tl[:-self.expand_size[0], :-self.expand_size[1]] = 0
mask_tr = torch.ones(self.window_size[0], self.window_size[1])
mask_tr[:-self.expand_size[0], self.expand_size[1]:] = 0
mask_bl = torch.ones(self.window_size[0], self.window_size[1])
mask_bl[self.expand_size[0]:, :-self.expand_size[1]] = 0
mask_br = torch.ones(self.window_size[0], self.window_size[1])
mask_br[self.expand_size[0]:, self.expand_size[1]:] = 0
mask_rolled = torch.stack((mask_tl, mask_tr, mask_bl, mask_br),
0).flatten(0)
self.register_buffer("valid_ind_rolled",
mask_rolled.nonzero(as_tuple=False).view(-1))
if pool_method != "none" and focal_level > 1:
self.unfolds = nn.ModuleList()
# build relative position bias between local patch and pooled windows
for k in range(focal_level - 1):
stride = 2**k
kernel_size = tuple(2 * (i // 2) + 2**k + (2**k - 1)
for i in self.focal_window)
# define unfolding operations
self.unfolds += [
nn.Unfold(kernel_size=kernel_size,
stride=stride,
padding=tuple(i // 2 for i in kernel_size))
]
# define unfolding index for focal_level > 0
if k > 0:
mask = torch.zeros(kernel_size)
mask[(2**k) - 1:, (2**k) - 1:] = 1
self.register_buffer(
"valid_ind_unfold_{}".format(k),
mask.flatten(0).nonzero(as_tuple=False).view(-1))
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x_all, mask_all=None):
"""
Args:
x: input features with shape of (B, T, Wh, Ww, C)
mask: (0/-inf) mask with shape of (num_windows, T*Wh*Ww, T*Wh*Ww) or None
output: (nW*B, Wh*Ww, C)
"""
x = x_all[0]
B, T, nH, nW, C = x.shape
qkv = self.qkv(x).reshape(B, T, nH, nW, 3,
C).permute(4, 0, 1, 2, 3, 5).contiguous()
q, k, v = qkv[0], qkv[1], qkv[2] # B, T, nH, nW, C
# partition q map
(q_windows, k_windows, v_windows) = map(
lambda t: window_partition(t, self.window_size).view(
-1, T, self.window_size[0] * self.window_size[1], self.
num_heads, C // self.num_heads).permute(0, 3, 1, 2, 4).
contiguous().view(-1, self.num_heads, T * self.window_size[
0] * self.window_size[1], C // self.num_heads), (q, k, v))
# q(k/v)_windows shape : [16, 4, 225, 128]
if any(i > 0 for i in self.expand_size) and self.focal_level > 0:
(k_tl, v_tl) = map(
lambda t: torch.roll(t,
shifts=(-self.expand_size[0], -self.
expand_size[1]),
dims=(2, 3)), (k, v))
(k_tr, v_tr) = map(
lambda t: torch.roll(t,
shifts=(-self.expand_size[0], self.
expand_size[1]),
dims=(2, 3)), (k, v))
(k_bl, v_bl) = map(
lambda t: torch.roll(t,
shifts=(self.expand_size[0], -self.
expand_size[1]),
dims=(2, 3)), (k, v))
(k_br, v_br) = map(
lambda t: torch.roll(t,
shifts=(self.expand_size[0], self.
expand_size[1]),
dims=(2, 3)), (k, v))
(k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows) = map(
lambda t: window_partition(t, self.window_size).view(
-1, T, self.window_size[0] * self.window_size[1], self.
num_heads, C // self.num_heads), (k_tl, k_tr, k_bl, k_br))
(v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows) = map(
lambda t: window_partition(t, self.window_size).view(
-1, T, self.window_size[0] * self.window_size[1], self.
num_heads, C // self.num_heads), (v_tl, v_tr, v_bl, v_br))
k_rolled = torch.cat(
(k_tl_windows, k_tr_windows, k_bl_windows, k_br_windows),
2).permute(0, 3, 1, 2, 4).contiguous()
v_rolled = torch.cat(
(v_tl_windows, v_tr_windows, v_bl_windows, v_br_windows),
2).permute(0, 3, 1, 2, 4).contiguous()
# mask out tokens in current window
k_rolled = k_rolled[:, :, :, self.valid_ind_rolled]
v_rolled = v_rolled[:, :, :, self.valid_ind_rolled]
temp_N = k_rolled.shape[3]
k_rolled = k_rolled.view(-1, self.num_heads, T * temp_N,
C // self.num_heads)
v_rolled = v_rolled.view(-1, self.num_heads, T * temp_N,
C // self.num_heads)
k_rolled = torch.cat((k_windows, k_rolled), 2)
v_rolled = torch.cat((v_windows, v_rolled), 2)
else:
k_rolled = k_windows
v_rolled = v_windows
# q(k/v)_windows shape : [16, 4, 225, 128]
# k_rolled.shape : [16, 4, 5, 165, 128]
# ideal expanded window size 153 ((5+2*2)*(9+2*4))
# k_windows=45 expand_window=108 overlap_window=12 (since expand_size < window_size / 2)
if self.pool_method != "none" and self.focal_level > 1:
k_pooled = []
v_pooled = []
for k in range(self.focal_level - 1):
stride = 2**k
# B, T, nWh, nWw, C
x_window_pooled = x_all[k + 1].permute(0, 3, 1, 2,
4).contiguous()
nWh, nWw = x_window_pooled.shape[2:4]
# generate mask for pooled windows
mask = x_window_pooled.new(T, nWh, nWw).fill_(1)
# unfold mask: [nWh*nWw//s//s, k*k, 1]
unfolded_mask = self.unfolds[k](mask.unsqueeze(1)).view(
1, T, self.unfolds[k].kernel_size[0], self.unfolds[k].kernel_size[1], -1).permute(4, 1, 2, 3, 0).contiguous().\
view(nWh*nWw // stride // stride, -1, 1)
if k > 0:
valid_ind_unfold_k = getattr(
self, "valid_ind_unfold_{}".format(k))
unfolded_mask = unfolded_mask[:, valid_ind_unfold_k]
x_window_masks = unfolded_mask.flatten(1).unsqueeze(0)
x_window_masks = x_window_masks.masked_fill(
x_window_masks == 0,
float(-100.0)).masked_fill(x_window_masks > 0, float(0.0))
mask_all[k + 1] = x_window_masks
# generate k and v for pooled windows
qkv_pooled = self.qkv(x_window_pooled).reshape(
B, T, nWh, nWw, 3, C).permute(4, 0, 1, 5, 2,
3).view(3, -1, C, nWh,
nWw).contiguous()
# B*T, C, nWh, nWw
k_pooled_k, v_pooled_k = qkv_pooled[1], qkv_pooled[2]
# k_pooled_k shape: [5, 512, 4, 4]
# self.unfolds[k](k_pooled_k) shape: [5, 23040 (512 * 5 * 9 ), 16]
(k_pooled_k, v_pooled_k) = map(
lambda t: self.unfolds[k]
(t).view(B, T, C, self.unfolds[k].kernel_size[0], self.
unfolds[k].kernel_size[1], -1)
.permute(0, 5, 1, 3, 4, 2).contiguous().view(
-1, T, self.unfolds[k].kernel_size[0] * self.unfolds[
k].kernel_size[1], self.num_heads, C // self.
num_heads).permute(0, 3, 1, 2, 4).contiguous(),
# (B x (nH*nW)) x nHeads x T x (unfold_wsize x unfold_wsize) x head_dim
(k_pooled_k, v_pooled_k))
# k_pooled_k shape : [16, 4, 5, 45, 128]
# select valid unfolding index
if k > 0:
(k_pooled_k, v_pooled_k) = map(
lambda t: t[:, :, :, valid_ind_unfold_k],
(k_pooled_k, v_pooled_k))
k_pooled_k = k_pooled_k.view(
-1, self.num_heads, T * self.unfolds[k].kernel_size[0] *
self.unfolds[k].kernel_size[1], C // self.num_heads)
v_pooled_k = v_pooled_k.view(
-1, self.num_heads, T * self.unfolds[k].kernel_size[0] *
self.unfolds[k].kernel_size[1], C // self.num_heads)
k_pooled += [k_pooled_k]
v_pooled += [v_pooled_k]
# k_all (v_all) shape : [16, 4, 5 * 210, 128]
k_all = torch.cat([k_rolled] + k_pooled, 2)
v_all = torch.cat([v_rolled] + v_pooled, 2)
else:
k_all = k_rolled
v_all = v_rolled
N = k_all.shape[-2]
q_windows = q_windows * self.scale
# B*nW, nHead, T*window_size*window_size, T*focal_window_size*focal_window_size
attn = (q_windows @ k_all.transpose(-2, -1))
# T * 45
window_area = T * self.window_size[0] * self.window_size[1]
# T * 165
window_area_rolled = k_rolled.shape[2]
if self.pool_method != "none" and self.focal_level > 1:
offset = window_area_rolled
for k in range(self.focal_level - 1):
# add attentional mask
# mask_all[1] shape [1, 16, T * 45]
bias = tuple((i + 2**k - 1) for i in self.focal_window)
if mask_all[k + 1] is not None:
attn[:, :, :window_area, offset:(offset + (T*bias[0]*bias[1]))] = \
attn[:, :, :window_area, offset:(offset + (T*bias[0]*bias[1]))] + \
mask_all[k+1][:, :, None, None, :].repeat(
attn.shape[0] // mask_all[k+1].shape[1], 1, 1, 1, 1).view(-1, 1, 1, mask_all[k+1].shape[-1])
offset += T * bias[0] * bias[1]
if mask_all[0] is not None:
nW = mask_all[0].shape[0]
attn = attn.view(attn.shape[0] // nW, nW, self.num_heads,
window_area, N)
attn[:, :, :, :, :
window_area] = attn[:, :, :, :, :window_area] + mask_all[0][
None, :, None, :, :]
attn = attn.view(-1, self.num_heads, window_area, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
x = (attn @ v_all).transpose(1, 2).reshape(attn.shape[0], window_area,
C)
x = self.proj(x)
return x
class TemporalFocalTransformerBlock(nn.Module):
r""" Temporal Focal Transformer Block.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (tuple[int]): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
focal_level (int): The number level of focal window.
focal_window (int): Window size of each focal window.
n_vecs (int): Required for F3N.
t2t_params (int): T2T parameters for F3N.
"""
def __init__(self,
dim,
num_heads,
window_size=(5, 9),
mlp_ratio=4.,
qkv_bias=True,
pool_method="fc",
focal_level=2,
focal_window=(5, 9),
norm_layer=nn.LayerNorm,
n_vecs=None,
t2t_params=None):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.expand_size = tuple(i // 2 for i in window_size) # TODO
self.mlp_ratio = mlp_ratio
self.pool_method = pool_method
self.focal_level = focal_level
self.focal_window = focal_window
self.window_size_glo = self.window_size
self.pool_layers = nn.ModuleList()
if self.pool_method != "none":
for k in range(self.focal_level - 1):
window_size_glo = tuple(
math.floor(i / (2**k)) for i in self.window_size_glo)
self.pool_layers.append(
nn.Linear(window_size_glo[0] * window_size_glo[1], 1))
self.pool_layers[-1].weight.data.fill_(
1. / (window_size_glo[0] * window_size_glo[1]))
self.pool_layers[-1].bias.data.fill_(0)
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(dim,
expand_size=self.expand_size,
window_size=self.window_size,
focal_window=focal_window,
focal_level=focal_level,
num_heads=num_heads,
qkv_bias=qkv_bias,
pool_method=pool_method)
self.norm2 = norm_layer(dim)
self.mlp = FusionFeedForward(dim, n_vecs=n_vecs, t2t_params=t2t_params)
def forward(self, x):
output_size = x[1]
x = x[0]
B, T, H, W, C = x.shape
shortcut = x
x = self.norm1(x)
shifted_x = x
x_windows_all = [shifted_x]
x_window_masks_all = [None]
# partition windows tuple(i // 2 for i in window_size)
if self.focal_level > 1 and self.pool_method != "none":
# if we add coarser granularity and the pool method is not none
for k in range(self.focal_level - 1):
window_size_glo = tuple(
math.floor(i / (2**k)) for i in self.window_size_glo)
pooled_h = math.ceil(H / window_size_glo[0]) * (2**k)
pooled_w = math.ceil(W / window_size_glo[1]) * (2**k)
H_pool = pooled_h * window_size_glo[0]
W_pool = pooled_w * window_size_glo[1]
x_level_k = shifted_x
# trim or pad shifted_x depending on the required size
if H > H_pool:
trim_t = (H - H_pool) // 2
trim_b = H - H_pool - trim_t
x_level_k = x_level_k[:, :, trim_t:-trim_b]
elif H < H_pool:
pad_t = (H_pool - H) // 2
pad_b = H_pool - H - pad_t
x_level_k = F.pad(x_level_k, (0, 0, 0, 0, pad_t, pad_b))
if W > W_pool:
trim_l = (W - W_pool) // 2
trim_r = W - W_pool - trim_l
x_level_k = x_level_k[:, :, :, trim_l:-trim_r]
elif W < W_pool:
pad_l = (W_pool - W) // 2
pad_r = W_pool - W - pad_l
x_level_k = F.pad(x_level_k, (0, 0, pad_l, pad_r))
x_windows_noreshape = window_partition_noreshape(
x_level_k.contiguous(), window_size_glo
) # B, nw, nw, T, window_size, window_size, C
nWh, nWw = x_windows_noreshape.shape[1:3]
x_windows_noreshape = x_windows_noreshape.view(
B, nWh, nWw, T, window_size_glo[0] * window_size_glo[1],
C).transpose(4, 5) # B, nWh, nWw, T, C, wsize**2
x_windows_pooled = self.pool_layers[k](
x_windows_noreshape).flatten(-2) # B, nWh, nWw, T, C
x_windows_all += [x_windows_pooled]
x_window_masks_all += [None]
# nW*B, T*window_size*window_size, C
attn_windows = self.attn(x_windows_all, mask_all=x_window_masks_all)
# merge windows
attn_windows = attn_windows.view(-1, T, self.window_size[0],
self.window_size[1], C)
shifted_x = window_reverse(attn_windows, self.window_size, T, H,
W) # B T H' W' C
# FFN
x = shortcut + shifted_x
y = self.norm2(x)
x = x + self.mlp(y.view(B, T * H * W, C), output_size).view(
B, T, H, W, C)
return x, output_size