Spaces:
Running
Running
import time | |
import gradio | |
import numpy as np | |
import torch | |
from transformers import LogitsProcessor | |
from modules import html_generator, shared | |
params = { | |
'active': True, | |
'color_by_perplexity': False, | |
'color_by_probability': False, | |
'ppl_scale': 15.0, # No slider for this right now, because I don't think it really needs to be changed. Very large perplexity scores don't show up often. | |
'probability_dropdown': False, | |
'verbose': False # For debugging mostly | |
} | |
class PerplexityLogits(LogitsProcessor): | |
def __init__(self, verbose=False): | |
self.generated_token_ids = [] | |
self.selected_probs = [] | |
self.top_token_ids_list = [] | |
self.top_probs_list = [] | |
self.perplexities_list = [] | |
self.last_probs = None | |
self.verbose = verbose | |
def __call__(self, input_ids, scores): | |
# t0 = time.time() | |
probs = torch.softmax(scores, dim=-1, dtype=torch.float) | |
log_probs = torch.nan_to_num(torch.log(probs)) # Note: This is to convert log(0) nan to 0, but probs*log_probs makes this 0 not affect the perplexity. | |
entropy = -torch.sum(probs * log_probs) | |
entropy = entropy.cpu().numpy() | |
perplexity = round(float(np.exp(entropy)), 4) | |
self.perplexities_list.append(perplexity) | |
last_token_id = int(input_ids[0][-1].cpu().numpy().item()) | |
# Store the generated tokens (not sure why this isn't accessible in the output endpoint!) | |
self.generated_token_ids.append(last_token_id) | |
# Get last probability, and add to the list if it wasn't there | |
if len(self.selected_probs) > 0: | |
# Is the selected token in the top tokens? | |
if self.verbose: | |
print('Probs: Token after', shared.tokenizer.decode(last_token_id)) | |
print('Probs:', [shared.tokenizer.decode(token_id) for token_id in self.top_token_ids_list[-1][0]]) | |
print('Probs:', [round(float(prob), 4) for prob in self.top_probs_list[-1][0]]) | |
if last_token_id in self.top_token_ids_list[-1][0]: | |
idx = self.top_token_ids_list[-1][0].index(last_token_id) | |
self.selected_probs.append(self.top_probs_list[-1][0][idx]) | |
else: | |
self.top_token_ids_list[-1][0].append(last_token_id) | |
last_prob = round(float(self.last_probs[last_token_id]), 4) | |
self.top_probs_list[-1][0].append(last_prob) | |
self.selected_probs.append(last_prob) | |
else: | |
self.selected_probs.append(1.0) # Placeholder for the last token of the prompt | |
if self.verbose: | |
pplbar = "-" | |
if not np.isnan(perplexity): | |
pplbar = "*" * round(perplexity) | |
print(f"PPL: Token after {shared.tokenizer.decode(last_token_id)}\t{perplexity:.2f}\t{pplbar}") | |
# Get top 5 probabilities | |
top_tokens_and_probs = torch.topk(probs, 5) | |
top_probs = top_tokens_and_probs.values.cpu().numpy().astype(float).tolist() | |
top_token_ids = top_tokens_and_probs.indices.cpu().numpy().astype(int).tolist() | |
self.top_token_ids_list.append(top_token_ids) | |
self.top_probs_list.append(top_probs) | |
probs = probs.cpu().numpy().flatten() | |
self.last_probs = probs # Need to keep this as a reference for top probs | |
# t1 = time.time() | |
# print(f"PPL Processor: {(t1-t0):.3f} s") | |
# About 1 ms, though occasionally up to around 100 ms, not sure why... | |
# Doesn't actually modify the logits! | |
return scores | |
# Stores the perplexity and top probabilities | |
ppl_logits_processor = None | |
def logits_processor_modifier(logits_processor_list, input_ids): | |
global ppl_logits_processor | |
if params['active']: | |
ppl_logits_processor = PerplexityLogits(verbose=params['verbose']) | |
logits_processor_list.append(ppl_logits_processor) | |
def output_modifier(text): | |
global ppl_logits_processor | |
# t0 = time.time() | |
if not params['active']: | |
return text | |
# TODO: It's probably more efficient to do this above rather than modifying all these lists | |
# Remove last element of perplexities_list, top_token_ids_list, top_tokens_list, top_probs_list since everything is off by one because this extension runs before generation | |
perplexities = ppl_logits_processor.perplexities_list[:-1] | |
top_token_ids_list = ppl_logits_processor.top_token_ids_list[:-1] | |
top_tokens_list = [[shared.tokenizer.decode(token_id) for token_id in top_token_ids[0]] for top_token_ids in top_token_ids_list] | |
top_probs_list = ppl_logits_processor.top_probs_list[:-1] | |
# Remove first element of generated_token_ids, generated_tokens, selected_probs because they are for the last token of the prompt | |
gen_token_ids = ppl_logits_processor.generated_token_ids[1:] | |
gen_tokens = [shared.tokenizer.decode(token_id) for token_id in gen_token_ids] | |
sel_probs = ppl_logits_processor.selected_probs[1:] | |
end_part = '</div></div>' if params['probability_dropdown'] else '</span>' # Helps with finding the index after replacing part of the text. | |
i = 0 | |
for token, prob, ppl, top_tokens, top_probs in zip(gen_tokens, sel_probs, perplexities, top_tokens_list, top_probs_list): | |
color = 'ffffff' | |
if params['color_by_probability'] and params['color_by_perplexity']: | |
color = probability_perplexity_color_scale(prob, ppl) | |
elif params['color_by_perplexity']: | |
color = perplexity_color_scale(ppl) | |
elif params['color_by_probability']: | |
color = probability_color_scale(prob) | |
if token in text[i:]: | |
if params['probability_dropdown']: | |
text = text[:i] + text[i:].replace(token, add_dropdown_html(token, color, top_tokens, top_probs[0], ppl), 1) | |
else: | |
text = text[:i] + text[i:].replace(token, add_color_html(token, color), 1) | |
i += text[i:].find(end_part) + len(end_part) | |
# Use full perplexity list for calculating the average here. | |
print('Average perplexity:', round(np.mean(ppl_logits_processor.perplexities_list[:-1]), 4)) | |
# t1 = time.time() | |
# print(f"Modifier: {(t1-t0):.3f} s") | |
# About 50 ms | |
return text | |
def probability_color_scale(prob): | |
''' | |
Green-yellow-red color scale | |
''' | |
rv = 0 | |
gv = 0 | |
if prob <= 0.5: | |
rv = 'ff' | |
gv = hex(int(255 * prob * 2))[2:] | |
if len(gv) < 2: | |
gv = '0' * (2 - len(gv)) + gv | |
else: | |
rv = hex(int(255 - 255 * (prob - 0.5) * 2))[2:] | |
gv = 'ff' | |
if len(rv) < 2: | |
rv = '0' * (2 - len(rv)) + rv | |
return rv + gv + '00' | |
def perplexity_color_scale(ppl): | |
''' | |
Red component only, white for 0 perplexity (sorry if you're not in dark mode) | |
''' | |
value = hex(max(int(255.0 - params['ppl_scale'] * (float(ppl) - 1.0)), 0))[2:] | |
if len(value) < 2: | |
value = '0' * (2 - len(value)) + value | |
return 'ff' + value + value | |
def probability_perplexity_color_scale(prob, ppl): | |
''' | |
Green-yellow-red for probability and blue component for perplexity | |
''' | |
rv = 0 | |
gv = 0 | |
bv = hex(min(max(int(params['ppl_scale'] * (float(ppl) - 1.0)), 0), 255))[2:] | |
if len(bv) < 2: | |
bv = '0' * (2 - len(bv)) + bv | |
if prob <= 0.5: | |
rv = 'ff' | |
gv = hex(int(255 * prob * 2))[2:] | |
if len(gv) < 2: | |
gv = '0' * (2 - len(gv)) + gv | |
else: | |
rv = hex(int(255 - 255 * (prob - 0.5) * 2))[2:] | |
gv = 'ff' | |
if len(rv) < 2: | |
rv = '0' * (2 - len(rv)) + rv | |
return rv + gv + bv | |
def add_color_html(token, color): | |
return f'<span style="color: #{color}">{token}</span>' | |
# TODO: Major issue: Applying this to too many tokens will cause a permanent slowdown in generation speed until the messages are removed from the history. | |
# I think the issue is from HTML elements taking up space in the visible history, and things like history deepcopy add latency proportional to the size of the history. | |
# Potential solution is maybe to modify the main generation code to send just the internal text and not the visible history, to avoid moving too much around. | |
# I wonder if we can also avoid using deepcopy here. | |
def add_dropdown_html(token, color, top_tokens, top_probs, perplexity=0): | |
html = f'<div class="hoverable"><span style="color: #{color}">{token}</span><div class="dropdown"><table class="dropdown-content"><tbody>' | |
for token_option, prob in zip(top_tokens, top_probs): | |
# TODO: Bold for selected token? | |
# Using divs prevented the problem of divs inside spans causing issues. | |
# Now the problem is that divs show the same whitespace of one space between every token. | |
# There is probably some way to fix this in CSS that I don't know about. | |
row_color = probability_color_scale(prob) | |
row_class = ' class="selected"' if token_option == token else '' | |
html += f'<tr{row_class}><td style="color: #{row_color}">{token_option}</td><td style="color: #{row_color}">{prob:.4f}</td></tr>' | |
if perplexity != 0: | |
ppl_color = perplexity_color_scale(perplexity) | |
html += f'<tr><td>Perplexity:</td><td style="color: #{ppl_color}">{perplexity:.4f}</td></tr>' | |
html += '</tbody></table></div></div>' | |
return html # About 750 characters per token... | |
def custom_css(): | |
return """ | |
.dropdown { | |
display: none; | |
position: absolute; | |
z-index: 50; | |
background-color: var(--block-background-fill); | |
box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2); | |
width: max-content; | |
overflow: visible; | |
padding: 5px; | |
border-radius: 10px; | |
border: 1px solid var(--border-color-primary); | |
} | |
.dropdown-content { | |
border: none; | |
z-index: 50; | |
} | |
.dropdown-content tr.selected { | |
background-color: var(--block-label-background-fill); | |
} | |
.dropdown-content td { | |
color: var(--body-text-color); | |
} | |
.hoverable { | |
color: var(--body-text-color); | |
position: relative; | |
display: inline-block; | |
overflow: visible; | |
font-size: 15px; | |
line-height: 1.75; | |
margin: 0; | |
padding: 0; | |
} | |
.hoverable:hover .dropdown { | |
display: block; | |
} | |
pre { | |
white-space: pre-wrap; | |
} | |
# TODO: This makes the hover menus extend outside the bounds of the chat area, which is good. | |
# However, it also makes the scrollbar disappear, which is bad. | |
# The scroll bar needs to still be present. So for now, we can't see dropdowns that extend past the edge of the chat area. | |
#.chat { | |
# overflow-y: auto; | |
#} | |
""" | |
# Monkeypatch applied to html_generator.py | |
# We simply don't render markdown into HTML. We wrap everything in <pre> tags to preserve whitespace | |
# formatting. If you're coloring tokens by perplexity or probability, or especially if you're using | |
# the probability dropdown, you probably care more about seeing the tokens the model actually outputted | |
# rather than rendering ```code blocks``` or *italics*. | |
def convert_to_markdown(string): | |
return '<pre>' + string + '</pre>' | |
html_generator.convert_to_markdown = convert_to_markdown | |
def ui(): | |
def update_active_check(x): | |
params.update({'active': x}) | |
def update_color_by_ppl_check(x): | |
params.update({'color_by_perplexity': x}) | |
def update_color_by_prob_check(x): | |
params.update({'color_by_probability': x}) | |
def update_prob_dropdown_check(x): | |
params.update({'probability_dropdown': x}) | |
active_check = gradio.Checkbox(value=True, label="Compute probabilities and perplexity scores", info="Activate this extension. Note that this extension currently does not work with exllama or llama.cpp.") | |
color_by_ppl_check = gradio.Checkbox(value=False, label="Color by perplexity", info="Higher perplexity is more red. If also showing probability, higher perplexity has more blue component.") | |
color_by_prob_check = gradio.Checkbox(value=False, label="Color by probability", info="Green-yellow-red linear scale, with 100% green, 50% yellow, 0% red.") | |
prob_dropdown_check = gradio.Checkbox(value=False, label="Probability dropdown", info="Hover over a token to show a dropdown of top token probabilities. Currently slightly buggy with whitespace between tokens.") | |
active_check.change(update_active_check, active_check, None) | |
color_by_ppl_check.change(update_color_by_ppl_check, color_by_ppl_check, None) | |
color_by_prob_check.change(update_color_by_prob_check, color_by_prob_check, None) | |
prob_dropdown_check.change(update_prob_dropdown_check, prob_dropdown_check, None) | |