Spaces:
Running
Running
import copy | |
# Slightly different defaults for OpenAI's API | |
# Data type is important, Ex. use 0.0 for a float 0 | |
default_req_params = { | |
'max_new_tokens': 16, # 'Inf' for chat | |
'auto_max_new_tokens': False, | |
'max_tokens_second': 0, | |
'temperature': 1.0, | |
'top_p': 1.0, | |
'top_k': 1, # choose 20 for chat in absence of another default | |
'repetition_penalty': 1.18, | |
'repetition_penalty_range': 0, | |
'encoder_repetition_penalty': 1.0, | |
'suffix': None, | |
'stream': False, | |
'echo': False, | |
'seed': -1, | |
# 'n' : default(body, 'n', 1), # 'n' doesn't have a direct map | |
'truncation_length': 2048, # first use shared.settings value | |
'add_bos_token': True, | |
'do_sample': True, | |
'typical_p': 1.0, | |
'epsilon_cutoff': 0.0, # In units of 1e-4 | |
'eta_cutoff': 0.0, # In units of 1e-4 | |
'tfs': 1.0, | |
'top_a': 0.0, | |
'min_length': 0, | |
'no_repeat_ngram_size': 0, | |
'num_beams': 1, | |
'penalty_alpha': 0.0, | |
'length_penalty': 1.0, | |
'early_stopping': False, | |
'mirostat_mode': 0, | |
'mirostat_tau': 5.0, | |
'mirostat_eta': 0.1, | |
'grammar_string': '', | |
'guidance_scale': 1, | |
'negative_prompt': '', | |
'ban_eos_token': False, | |
'custom_token_bans': '', | |
'skip_special_tokens': True, | |
'custom_stopping_strings': '', | |
# 'logits_processor' - conditionally passed | |
# 'stopping_strings' - temporarily used | |
# 'logprobs' - temporarily used | |
# 'requested_model' - temporarily used | |
} | |
def get_default_req_params(): | |
return copy.deepcopy(default_req_params) | |
def default(dic, key, default): | |
''' | |
little helper to get defaults if arg is present but None and should be the same type as default. | |
''' | |
val = dic.get(key, default) | |
if not isinstance(val, type(default)): | |
# maybe it's just something like 1 instead of 1.0 | |
try: | |
v = type(default)(val) | |
if type(val)(v) == val: # if it's the same value passed in, it's ok. | |
return v | |
except: | |
pass | |
val = default | |
return val | |
def clamp(value, minvalue, maxvalue): | |
return max(minvalue, min(value, maxvalue)) | |