|
|
from fastapi import FastAPI, HTTPException, File, UploadFile, Form |
|
|
from fastapi.middleware.cors import CORSMiddleware |
|
|
from pydantic import BaseModel |
|
|
from typing import Optional, List, Dict |
|
|
from pymongo import MongoClient |
|
|
from datetime import datetime |
|
|
import numpy as np |
|
|
import os |
|
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
from embedding_service import JinaClipEmbeddingService |
|
|
from qdrant_service import QdrantVectorService |
|
|
|
|
|
|
|
|
|
|
|
class ChatRequest(BaseModel): |
|
|
message: str |
|
|
use_rag: bool = True |
|
|
top_k: int = 3 |
|
|
system_message: Optional[str] = "You are a helpful AI assistant." |
|
|
max_tokens: int = 512 |
|
|
temperature: float = 0.7 |
|
|
top_p: float = 0.95 |
|
|
hf_token: Optional[str] = None |
|
|
|
|
|
|
|
|
class ChatResponse(BaseModel): |
|
|
response: str |
|
|
context_used: List[Dict] |
|
|
timestamp: str |
|
|
|
|
|
|
|
|
class AddDocumentRequest(BaseModel): |
|
|
text: str |
|
|
metadata: Optional[Dict] = None |
|
|
|
|
|
|
|
|
class AddDocumentResponse(BaseModel): |
|
|
success: bool |
|
|
doc_id: str |
|
|
message: str |
|
|
|
|
|
|
|
|
class SearchRequest(BaseModel): |
|
|
query: str |
|
|
top_k: int = 5 |
|
|
score_threshold: Optional[float] = 0.5 |
|
|
|
|
|
|
|
|
class SearchResponse(BaseModel): |
|
|
results: List[Dict] |
|
|
|
|
|
|
|
|
|
|
|
app = FastAPI( |
|
|
title="ChatbotRAG API", |
|
|
description="API for RAG Chatbot with GPT-OSS-20B + Jina CLIP v2 + MongoDB + Qdrant", |
|
|
version="1.0.0" |
|
|
) |
|
|
|
|
|
|
|
|
app.add_middleware( |
|
|
CORSMiddleware, |
|
|
allow_origins=["*"], |
|
|
allow_credentials=True, |
|
|
allow_methods=["*"], |
|
|
allow_headers=["*"], |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
class ChatbotRAGService: |
|
|
""" |
|
|
ChatbotRAG Service cho API |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
mongodb_uri: str = "mongodb+srv://truongtn7122003:7KaI9OT5KTUxWjVI@truongtn7122003.xogin4q.mongodb.net/", |
|
|
db_name: str = "chatbot_rag", |
|
|
collection_name: str = "documents", |
|
|
hf_token: Optional[str] = None |
|
|
): |
|
|
print("Initializing ChatbotRAG Service...") |
|
|
|
|
|
|
|
|
self.mongo_client = MongoClient(mongodb_uri) |
|
|
self.db = self.mongo_client[db_name] |
|
|
self.documents_collection = self.db[collection_name] |
|
|
self.chat_history_collection = self.db["chat_history"] |
|
|
|
|
|
|
|
|
self.embedding_service = JinaClipEmbeddingService( |
|
|
model_path="jinaai/jina-clip-v2" |
|
|
) |
|
|
|
|
|
|
|
|
collection_name = os.getenv("COLLECTION_NAME","event_social_media") |
|
|
self.qdrant_service = QdrantVectorService( |
|
|
collection_name= collection_name, |
|
|
vector_size=self.embedding_service.get_embedding_dimension() |
|
|
) |
|
|
|
|
|
|
|
|
self.hf_token = hf_token or os.getenv("HUGGINGFACE_TOKEN") |
|
|
if self.hf_token: |
|
|
print("✓ Hugging Face token configured") |
|
|
else: |
|
|
print("⚠ No Hugging Face token - LLM generation will use placeholder") |
|
|
|
|
|
print("✓ ChatbotRAG Service initialized") |
|
|
|
|
|
def add_document(self, text: str, metadata: Dict = None) -> str: |
|
|
"""Add document to knowledge base""" |
|
|
|
|
|
doc_data = { |
|
|
"text": text, |
|
|
"metadata": metadata or {}, |
|
|
"created_at": datetime.utcnow() |
|
|
} |
|
|
result = self.documents_collection.insert_one(doc_data) |
|
|
doc_id = str(result.inserted_id) |
|
|
|
|
|
|
|
|
embedding = self.embedding_service.encode_text(text) |
|
|
|
|
|
|
|
|
self.qdrant_service.index_data( |
|
|
doc_id=doc_id, |
|
|
embedding=embedding, |
|
|
metadata={ |
|
|
"text": text, |
|
|
"source": "api", |
|
|
**(metadata or {}) |
|
|
} |
|
|
) |
|
|
|
|
|
return doc_id |
|
|
|
|
|
def retrieve_context(self, query: str, top_k: int = 3, score_threshold: float = 0.5) -> List[Dict]: |
|
|
"""Retrieve relevant context from vector DB""" |
|
|
|
|
|
query_embedding = self.embedding_service.encode_text(query) |
|
|
|
|
|
|
|
|
results = self.qdrant_service.search( |
|
|
query_embedding=query_embedding, |
|
|
limit=top_k, |
|
|
score_threshold=score_threshold |
|
|
) |
|
|
|
|
|
return results |
|
|
|
|
|
def generate_response( |
|
|
self, |
|
|
message: str, |
|
|
context: List[Dict], |
|
|
system_message: str, |
|
|
max_tokens: int = 512, |
|
|
temperature: float = 0.7, |
|
|
top_p: float = 0.95, |
|
|
hf_token: Optional[str] = None |
|
|
) -> str: |
|
|
""" |
|
|
Generate response using Hugging Face LLM |
|
|
""" |
|
|
|
|
|
context_text = "" |
|
|
if context: |
|
|
context_text = "\n\nRelevant Context:\n" |
|
|
for i, doc in enumerate(context, 1): |
|
|
doc_text = doc["metadata"].get("text", "") |
|
|
confidence = doc["confidence"] |
|
|
context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n" |
|
|
|
|
|
|
|
|
system_message = f"{system_message}\n{context_text}\n\nPlease use the above context to answer the user's question when relevant." |
|
|
|
|
|
|
|
|
token = hf_token or self.hf_token |
|
|
|
|
|
|
|
|
if not token: |
|
|
return f"""[LLM Response Placeholder] |
|
|
|
|
|
Context retrieved: {len(context)} documents |
|
|
User question: {message} |
|
|
|
|
|
To enable actual LLM generation: |
|
|
1. Set HUGGINGFACE_TOKEN environment variable, OR |
|
|
2. Pass hf_token in request body |
|
|
|
|
|
Example: |
|
|
{{ |
|
|
"message": "Your question", |
|
|
"hf_token": "hf_xxxxxxxxxxxxx" |
|
|
}} |
|
|
""" |
|
|
|
|
|
|
|
|
try: |
|
|
client = InferenceClient( |
|
|
token=token, |
|
|
model="openai/gpt-oss-20b" |
|
|
) |
|
|
|
|
|
|
|
|
messages = [ |
|
|
{"role": "system", "content": system_message}, |
|
|
{"role": "user", "content": message} |
|
|
] |
|
|
|
|
|
|
|
|
response = "" |
|
|
for msg in client.chat_completion( |
|
|
messages, |
|
|
max_tokens=max_tokens, |
|
|
stream=True, |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
): |
|
|
choices = msg.choices |
|
|
if len(choices) and choices[0].delta.content: |
|
|
response += choices[0].delta.content |
|
|
|
|
|
return response |
|
|
|
|
|
except Exception as e: |
|
|
return f"Error generating response with LLM: {str(e)}\n\nContext was retrieved successfully, but LLM generation failed." |
|
|
|
|
|
def save_chat_history(self, user_message: str, assistant_response: str, context_used: List[Dict]): |
|
|
"""Save chat to MongoDB""" |
|
|
chat_data = { |
|
|
"user_message": user_message, |
|
|
"assistant_response": assistant_response, |
|
|
"context_used": context_used, |
|
|
"timestamp": datetime.utcnow() |
|
|
} |
|
|
self.chat_history_collection.insert_one(chat_data) |
|
|
|
|
|
def get_stats(self) -> Dict: |
|
|
"""Get statistics""" |
|
|
return { |
|
|
"documents_count": self.documents_collection.count_documents({}), |
|
|
"chat_history_count": self.chat_history_collection.count_documents({}), |
|
|
"qdrant_info": self.qdrant_service.get_collection_info() |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
rag_service = ChatbotRAGService() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.get("/") |
|
|
async def root(): |
|
|
"""Health check""" |
|
|
return { |
|
|
"status": "running", |
|
|
"service": "ChatbotRAG API", |
|
|
"version": "1.0.0", |
|
|
"endpoints": { |
|
|
"POST /chat": "Chat with RAG", |
|
|
"POST /documents": "Add document to knowledge base", |
|
|
"POST /search": "Search in knowledge base", |
|
|
"GET /stats": "Get statistics", |
|
|
"GET /history": "Get chat history" |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
@app.post("/chat", response_model=ChatResponse) |
|
|
async def chat(request: ChatRequest): |
|
|
""" |
|
|
Chat endpoint with RAG |
|
|
|
|
|
Body: |
|
|
- message: User message |
|
|
- use_rag: Enable RAG retrieval (default: true) |
|
|
- top_k: Number of documents to retrieve (default: 3) |
|
|
- system_message: System prompt (optional) |
|
|
- max_tokens: Max tokens for response (default: 512) |
|
|
- temperature: Temperature for generation (default: 0.7) |
|
|
|
|
|
Returns: |
|
|
- response: Generated response |
|
|
- context_used: Retrieved context documents |
|
|
- timestamp: Response timestamp |
|
|
""" |
|
|
try: |
|
|
|
|
|
context_used = [] |
|
|
if request.use_rag: |
|
|
context_used = rag_service.retrieve_context( |
|
|
query=request.message, |
|
|
top_k=request.top_k |
|
|
) |
|
|
|
|
|
|
|
|
response = rag_service.generate_response( |
|
|
message=request.message, |
|
|
context=context_used, |
|
|
system_message=request.system_message, |
|
|
max_tokens=request.max_tokens, |
|
|
temperature=request.temperature, |
|
|
top_p=request.top_p, |
|
|
hf_token=request.hf_token |
|
|
) |
|
|
|
|
|
|
|
|
rag_service.save_chat_history( |
|
|
user_message=request.message, |
|
|
assistant_response=response, |
|
|
context_used=context_used |
|
|
) |
|
|
|
|
|
return ChatResponse( |
|
|
response=response, |
|
|
context_used=context_used, |
|
|
timestamp=datetime.utcnow().isoformat() |
|
|
) |
|
|
|
|
|
except Exception as e: |
|
|
raise HTTPException(status_code=500, detail=f"Error: {str(e)}") |
|
|
|
|
|
|
|
|
@app.post("/documents", response_model=AddDocumentResponse) |
|
|
async def add_document(request: AddDocumentRequest): |
|
|
""" |
|
|
Add document to knowledge base |
|
|
|
|
|
Body: |
|
|
- text: Document text |
|
|
- metadata: Additional metadata (optional) |
|
|
|
|
|
Returns: |
|
|
- success: True/False |
|
|
- doc_id: MongoDB document ID |
|
|
- message: Status message |
|
|
""" |
|
|
try: |
|
|
doc_id = rag_service.add_document( |
|
|
text=request.text, |
|
|
metadata=request.metadata |
|
|
) |
|
|
|
|
|
return AddDocumentResponse( |
|
|
success=True, |
|
|
doc_id=doc_id, |
|
|
message=f"Document added successfully with ID: {doc_id}" |
|
|
) |
|
|
|
|
|
except Exception as e: |
|
|
raise HTTPException(status_code=500, detail=f"Error: {str(e)}") |
|
|
|
|
|
|
|
|
@app.post("/search", response_model=SearchResponse) |
|
|
async def search(request: SearchRequest): |
|
|
""" |
|
|
Search in knowledge base |
|
|
|
|
|
Body: |
|
|
- query: Search query |
|
|
- top_k: Number of results (default: 5) |
|
|
- score_threshold: Minimum score (default: 0.5) |
|
|
|
|
|
Returns: |
|
|
- results: List of matching documents |
|
|
""" |
|
|
try: |
|
|
results = rag_service.retrieve_context( |
|
|
query=request.query, |
|
|
top_k=request.top_k, |
|
|
score_threshold=request.score_threshold |
|
|
) |
|
|
|
|
|
return SearchResponse(results=results) |
|
|
|
|
|
except Exception as e: |
|
|
raise HTTPException(status_code=500, detail=f"Error: {str(e)}") |
|
|
|
|
|
|
|
|
@app.get("/stats") |
|
|
async def get_stats(): |
|
|
""" |
|
|
Get statistics |
|
|
|
|
|
Returns: |
|
|
- documents_count: Number of documents in MongoDB |
|
|
- chat_history_count: Number of chat messages |
|
|
- qdrant_info: Qdrant collection info |
|
|
""" |
|
|
try: |
|
|
return rag_service.get_stats() |
|
|
except Exception as e: |
|
|
raise HTTPException(status_code=500, detail=f"Error: {str(e)}") |
|
|
|
|
|
|
|
|
@app.get("/history") |
|
|
async def get_history(limit: int = 10, skip: int = 0): |
|
|
""" |
|
|
Get chat history |
|
|
|
|
|
Query params: |
|
|
- limit: Number of messages to return (default: 10) |
|
|
- skip: Number of messages to skip (default: 0) |
|
|
|
|
|
Returns: |
|
|
- history: List of chat messages |
|
|
""" |
|
|
try: |
|
|
history = list( |
|
|
rag_service.chat_history_collection |
|
|
.find({}, {"_id": 0}) |
|
|
.sort("timestamp", -1) |
|
|
.skip(skip) |
|
|
.limit(limit) |
|
|
) |
|
|
|
|
|
|
|
|
for msg in history: |
|
|
if "timestamp" in msg: |
|
|
msg["timestamp"] = msg["timestamp"].isoformat() |
|
|
|
|
|
return {"history": history, "total": rag_service.chat_history_collection.count_documents({})} |
|
|
|
|
|
except Exception as e: |
|
|
raise HTTPException(status_code=500, detail=f"Error: {str(e)}") |
|
|
|
|
|
|
|
|
@app.delete("/documents/{doc_id}") |
|
|
async def delete_document(doc_id: str): |
|
|
""" |
|
|
Delete document from knowledge base |
|
|
|
|
|
Args: |
|
|
- doc_id: Document ID (MongoDB ObjectId) |
|
|
|
|
|
Returns: |
|
|
- success: True/False |
|
|
- message: Status message |
|
|
""" |
|
|
try: |
|
|
|
|
|
result = rag_service.documents_collection.delete_one({"_id": doc_id}) |
|
|
|
|
|
|
|
|
if result.deleted_count > 0: |
|
|
rag_service.qdrant_service.delete_by_id(doc_id) |
|
|
return {"success": True, "message": f"Document {doc_id} deleted"} |
|
|
else: |
|
|
raise HTTPException(status_code=404, detail=f"Document {doc_id} not found") |
|
|
|
|
|
except HTTPException: |
|
|
raise |
|
|
except Exception as e: |
|
|
raise HTTPException(status_code=500, detail=f"Error: {str(e)}") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
import uvicorn |
|
|
uvicorn.run( |
|
|
app, |
|
|
host="0.0.0.0", |
|
|
port=8000, |
|
|
log_level="info" |
|
|
) |
|
|
|