Spaces:
Sleeping
Sleeping
| import gradio | |
| from transformers import pipeline | |
| def merge_split_token(tokens): | |
| merged = [] | |
| for token in tokens: | |
| if token["word"].startswith('##'): | |
| merged[-1]["word"] += token["word"][2:] | |
| else: | |
| merged.append(token) | |
| return merged | |
| def process_trans_text(text): | |
| nlp=pipeline("ner", model='KBLab/bert-base-swedish-cased-ner', tokenizer='KBLab/bert-base-swedish-cased-ner') | |
| nlp_results = nlp(text) | |
| print('nlp_results:', nlp_results) | |
| nlp_results_merge = merge_split_token(nlp_results) | |
| nlp_results_adjusted = map(lambda entity: dict(entity, **{ 'score': float(entity['score']) }), nlp_results_merge) | |
| print('nlp_results_adjusted:', nlp_results_adjusted) | |
| # Return values | |
| return {'entities': list(nlp_results_adjusted)} | |
| gradio_intreface = gradio.Interface( | |
| fn=process_trans_text, | |
| inputs="text", | |
| outputs="json", | |
| examples=[ | |
| ["Jag heter Tom och bor i Stockholm."], | |
| ["Groens malmgård är en av Stockholms malmgårdar, belägen vid Malmgårdsvägen 53 på Södermalm i Stockholm."] | |
| ], | |
| title="Entity Recognition", | |
| description="Something text", | |
| port=8888 | |
| ) | |
| gradio_intreface.launch(share=True) |