init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +4 -4
- __pycache__/imagenet_class_index.cpython-310.pyc +0 -0
- __pycache__/kinetics_class_index.cpython-310.pyc +0 -0
- __pycache__/transforms.cpython-310.pyc +0 -0
- __pycache__/videomamba_image.cpython-310.pyc +0 -0
- __pycache__/videomamba_video.cpython-310.pyc +0 -0
- app.py +180 -0
- causal-conv1d/AUTHORS +1 -0
- causal-conv1d/LICENSE +29 -0
- causal-conv1d/README.md +1 -0
- causal-conv1d/causal_conv1d/__init__.py +3 -0
- causal-conv1d/causal_conv1d/causal_conv1d_interface.py +104 -0
- causal-conv1d/csrc/causal_conv1d.cpp +333 -0
- causal-conv1d/csrc/causal_conv1d.h +53 -0
- causal-conv1d/csrc/causal_conv1d_bwd.cu +525 -0
- causal-conv1d/csrc/causal_conv1d_common.h +64 -0
- causal-conv1d/csrc/causal_conv1d_fwd.cu +350 -0
- causal-conv1d/csrc/causal_conv1d_update.cu +96 -0
- causal-conv1d/csrc/static_switch.h +25 -0
- causal-conv1d/setup.py +264 -0
- causal-conv1d/tests/test_causal_conv1d.py +173 -0
- imagenet_class_index.py +1002 -0
- images/cat.png +0 -0
- images/dog.png +0 -0
- images/panda.png +0 -0
- install.sh +2 -0
- kinetics_class_index.py +402 -0
- mamba/.gitmodules +3 -0
- mamba/AUTHORS +2 -0
- mamba/LICENSE +201 -0
- mamba/README.md +149 -0
- mamba/assets/selection.png +0 -0
- mamba/benchmarks/benchmark_generation_mamba_simple.py +88 -0
- mamba/csrc/selective_scan/reverse_scan.cuh +401 -0
- mamba/csrc/selective_scan/selective_scan.cpp +497 -0
- mamba/csrc/selective_scan/selective_scan.h +101 -0
- mamba/csrc/selective_scan/selective_scan_bwd_bf16_complex.cu +9 -0
- mamba/csrc/selective_scan/selective_scan_bwd_bf16_real.cu +9 -0
- mamba/csrc/selective_scan/selective_scan_bwd_fp16_complex.cu +9 -0
- mamba/csrc/selective_scan/selective_scan_bwd_fp16_real.cu +9 -0
- mamba/csrc/selective_scan/selective_scan_bwd_fp32_complex.cu +9 -0
- mamba/csrc/selective_scan/selective_scan_bwd_fp32_real.cu +9 -0
- mamba/csrc/selective_scan/selective_scan_bwd_kernel.cuh +531 -0
- mamba/csrc/selective_scan/selective_scan_common.h +221 -0
- mamba/csrc/selective_scan/selective_scan_fwd_bf16.cu +10 -0
- mamba/csrc/selective_scan/selective_scan_fwd_fp16.cu +10 -0
- mamba/csrc/selective_scan/selective_scan_fwd_fp32.cu +10 -0
- mamba/csrc/selective_scan/selective_scan_fwd_kernel.cuh +345 -0
- mamba/csrc/selective_scan/static_switch.h +25 -0
- mamba/csrc/selective_scan/uninitialized_copy.cuh +69 -0
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
title: VideoMamba
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
1 |
---
|
2 |
title: VideoMamba
|
3 |
+
emoji: 🐍
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.29.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
__pycache__/imagenet_class_index.cpython-310.pyc
ADDED
Binary file (60.6 kB). View file
|
|
__pycache__/kinetics_class_index.cpython-310.pyc
ADDED
Binary file (15.2 kB). View file
|
|
__pycache__/transforms.cpython-310.pyc
ADDED
Binary file (13.9 kB). View file
|
|
__pycache__/videomamba_image.cpython-310.pyc
ADDED
Binary file (9.64 kB). View file
|
|
__pycache__/videomamba_video.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torchvision.transforms as T
|
8 |
+
from PIL import Image
|
9 |
+
from decord import VideoReader
|
10 |
+
from decord import cpu
|
11 |
+
from videomamba_image import videomamba_image_tiny
|
12 |
+
from videomamba_video import videomamba_tiny
|
13 |
+
from kinetics_class_index import kinetics_classnames
|
14 |
+
from imagenet_class_index import imagenet_classnames
|
15 |
+
from transforms import (
|
16 |
+
GroupNormalize, GroupScale, GroupCenterCrop,
|
17 |
+
Stack, ToTorchFormatTensor
|
18 |
+
)
|
19 |
+
|
20 |
+
import gradio as gr
|
21 |
+
from huggingface_hub import hf_hub_download
|
22 |
+
|
23 |
+
|
24 |
+
# install packages for mamba
|
25 |
+
os.system("bash install.sh")
|
26 |
+
|
27 |
+
|
28 |
+
# Device on which to run the model
|
29 |
+
# Set to cuda to load on GPU
|
30 |
+
device = "cuda"
|
31 |
+
model_video_path = hf_hub_download(repo_id="OpenGVLab/VideoMamba", filename="videomamba_t16_k400_f16_res224.pth")
|
32 |
+
model_image_path = hf_hub_download(repo_id="OpenGVLab/VideoMamba", filename="videomamba_t16_in1k_res224.pth")
|
33 |
+
# Pick a pretrained model
|
34 |
+
model_video = videomamba_tiny(num_classes=400, num_frames=16)
|
35 |
+
video_sd = torch.load(model_video_path, map_location='cpu')
|
36 |
+
model_video.load_state_dict(video_sd)
|
37 |
+
model_image = videomamba_image_tiny()
|
38 |
+
image_sd = torch.load(model_image_path, map_location='cpu')
|
39 |
+
model_image.load_state_dict(image_sd['model'])
|
40 |
+
# Set to eval mode and move to desired device
|
41 |
+
model_video = model_video.to(device).eval()
|
42 |
+
model_image = model_image.to(device).eval()
|
43 |
+
|
44 |
+
# Create an id to label name mapping
|
45 |
+
kinetics_id_to_classname = {}
|
46 |
+
for k, v in kinetics_classnames.items():
|
47 |
+
kinetics_id_to_classname[k] = v
|
48 |
+
imagenet_id_to_classname = {}
|
49 |
+
for k, v in imagenet_classnames.items():
|
50 |
+
imagenet_id_to_classname[k] = v[1]
|
51 |
+
|
52 |
+
|
53 |
+
def get_index(num_frames, num_segments=8):
|
54 |
+
seg_size = float(num_frames - 1) / num_segments
|
55 |
+
start = int(seg_size / 2)
|
56 |
+
offsets = np.array([
|
57 |
+
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
|
58 |
+
])
|
59 |
+
return offsets
|
60 |
+
|
61 |
+
|
62 |
+
def load_video(video_path):
|
63 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
64 |
+
num_frames = len(vr)
|
65 |
+
frame_indices = get_index(num_frames, 16)
|
66 |
+
|
67 |
+
# transform
|
68 |
+
crop_size = 160
|
69 |
+
scale_size = 160
|
70 |
+
input_mean = [0.485, 0.456, 0.406]
|
71 |
+
input_std = [0.229, 0.224, 0.225]
|
72 |
+
|
73 |
+
transform = T.Compose([
|
74 |
+
GroupScale(int(scale_size)),
|
75 |
+
GroupCenterCrop(crop_size),
|
76 |
+
Stack(),
|
77 |
+
ToTorchFormatTensor(),
|
78 |
+
GroupNormalize(input_mean, input_std)
|
79 |
+
])
|
80 |
+
|
81 |
+
images_group = list()
|
82 |
+
for frame_index in frame_indices:
|
83 |
+
img = Image.fromarray(vr[frame_index].asnumpy())
|
84 |
+
images_group.append(img)
|
85 |
+
torch_imgs = transform(images_group)
|
86 |
+
return torch_imgs
|
87 |
+
|
88 |
+
|
89 |
+
def inference_video(video):
|
90 |
+
vid = load_video(video)
|
91 |
+
|
92 |
+
# The model expects inputs of shape: B x C x H x W
|
93 |
+
TC, H, W = vid.shape
|
94 |
+
inputs = vid.reshape(1, TC//3, 3, H, W).permute(0, 2, 1, 3, 4)
|
95 |
+
|
96 |
+
with torch.no_grad():
|
97 |
+
prediction = model_video(inputs.to(device))
|
98 |
+
prediction = F.softmax(prediction, dim=1).flatten()
|
99 |
+
|
100 |
+
return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)}
|
101 |
+
|
102 |
+
|
103 |
+
def set_example_video(example: list) -> dict:
|
104 |
+
return gr.Video.update(value=example[0])
|
105 |
+
|
106 |
+
|
107 |
+
def inference_image(img):
|
108 |
+
image = img
|
109 |
+
image_transform = T.Compose(
|
110 |
+
[
|
111 |
+
T.Resize(224),
|
112 |
+
T.CenterCrop(224),
|
113 |
+
T.ToTensor(),
|
114 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
115 |
+
]
|
116 |
+
)
|
117 |
+
image = image_transform(image)
|
118 |
+
|
119 |
+
# The model expects inputs of shape: B x C x H x W
|
120 |
+
image = image.unsqueeze(0)
|
121 |
+
|
122 |
+
with torch.no_grad():
|
123 |
+
prediction = model_image(image.to(device))
|
124 |
+
prediction = F.softmax(prediction, dim=1).flatten()
|
125 |
+
|
126 |
+
return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)}
|
127 |
+
|
128 |
+
|
129 |
+
def set_example_image(example: list) -> dict:
|
130 |
+
return gr.Image.update(value=example[0])
|
131 |
+
|
132 |
+
|
133 |
+
demo = gr.Blocks()
|
134 |
+
with demo:
|
135 |
+
gr.Markdown(
|
136 |
+
"""
|
137 |
+
# VideoMamba-Ti
|
138 |
+
Gradio demo for <a href='https://github.com/OpenGVLab/VideoMamba' target='_blank'>VideoMamba</a>: To use it, simply upload your video, or click one of the examples to load them. Read more at the links below.
|
139 |
+
"""
|
140 |
+
)
|
141 |
+
|
142 |
+
with gr.Tab("Video"):
|
143 |
+
with gr.Box():
|
144 |
+
with gr.Row():
|
145 |
+
with gr.Column():
|
146 |
+
with gr.Row():
|
147 |
+
input_video = gr.Video(label='Input Video').style(height=360)
|
148 |
+
with gr.Row():
|
149 |
+
submit_video_button = gr.Button('Submit')
|
150 |
+
with gr.Column():
|
151 |
+
label_video = gr.Label(num_top_classes=5)
|
152 |
+
with gr.Row():
|
153 |
+
example_videos = gr.Dataset(components=[input_video], samples=[['./videos/hitting_baseball.mp4'], ['./videos/hoverboarding.mp4'], ['./videos/yoga.mp4']])
|
154 |
+
|
155 |
+
with gr.Tab("Image"):
|
156 |
+
with gr.Box():
|
157 |
+
with gr.Row():
|
158 |
+
with gr.Column():
|
159 |
+
with gr.Row():
|
160 |
+
input_image = gr.Image(label='Input Image', type='pil').style(height=360)
|
161 |
+
with gr.Row():
|
162 |
+
submit_image_button = gr.Button('Submit')
|
163 |
+
with gr.Column():
|
164 |
+
label_image = gr.Label(num_top_classes=5)
|
165 |
+
with gr.Row():
|
166 |
+
example_images = gr.Dataset(components=[input_image], samples=[['./images/cat.png'], ['./images/dog.png'], ['./images/panda.png']])
|
167 |
+
|
168 |
+
gr.Markdown(
|
169 |
+
"""
|
170 |
+
<p style='text-align: center'><a href='https://arxiv.org/abs/2403.06977' target='_blank'>VideoMamba: State Space Model for Efficient Video Understanding</a> | <a href='https://github.com/OpenGVLab/VideoMamba' target='_blank'>Github Repo</a></p>
|
171 |
+
"""
|
172 |
+
)
|
173 |
+
|
174 |
+
submit_video_button.click(fn=inference_video, inputs=input_video, outputs=label_video)
|
175 |
+
example_videos.click(fn=set_example_video, inputs=example_videos, outputs=example_videos.components)
|
176 |
+
submit_image_button.click(fn=inference_image, inputs=input_image, outputs=label_image)
|
177 |
+
example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components)
|
178 |
+
|
179 |
+
demo.launch(enable_queue=True)
|
180 |
+
# demo.launch(server_name="0.0.0.0", server_port=10034, enable_queue=True)
|
causal-conv1d/AUTHORS
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Tri Dao, tri@tridao.me
|
causal-conv1d/LICENSE
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BSD 3-Clause License
|
2 |
+
|
3 |
+
Copyright (c) 2022, the respective contributors, as shown by the AUTHORS file.
|
4 |
+
All rights reserved.
|
5 |
+
|
6 |
+
Redistribution and use in source and binary forms, with or without
|
7 |
+
modification, are permitted provided that the following conditions are met:
|
8 |
+
|
9 |
+
* Redistributions of source code must retain the above copyright notice, this
|
10 |
+
list of conditions and the following disclaimer.
|
11 |
+
|
12 |
+
* Redistributions in binary form must reproduce the above copyright notice,
|
13 |
+
this list of conditions and the following disclaimer in the documentation
|
14 |
+
and/or other materials provided with the distribution.
|
15 |
+
|
16 |
+
* Neither the name of the copyright holder nor the names of its
|
17 |
+
contributors may be used to endorse or promote products derived from
|
18 |
+
this software without specific prior written permission.
|
19 |
+
|
20 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
21 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
22 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
23 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
24 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
25 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
26 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
27 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
28 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
29 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
causal-conv1d/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Causal depthwise conv1d in CUDA with a PyTorch interface
|
causal-conv1d/causal_conv1d/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
__version__ = "1.0.0"
|
2 |
+
|
3 |
+
from causal_conv1d.causal_conv1d_interface import causal_conv1d_fn, causal_conv1d_update
|
causal-conv1d/causal_conv1d/causal_conv1d_interface.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Tri Dao.
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
|
7 |
+
import causal_conv1d_cuda
|
8 |
+
|
9 |
+
|
10 |
+
class CausalConv1dFn(torch.autograd.Function):
|
11 |
+
@staticmethod
|
12 |
+
def forward(ctx, x, weight, bias=None, activation=None):
|
13 |
+
if activation not in [None, "silu", "swish"]:
|
14 |
+
raise NotImplementedError("activation must be None, silu, or swish")
|
15 |
+
if x.stride(2) != 1 and x.stride(1) != 1:
|
16 |
+
x = x.contiguous()
|
17 |
+
bias = bias.contiguous() if bias is not None else None
|
18 |
+
ctx.save_for_backward(x, weight, bias)
|
19 |
+
ctx.activation = activation in ["silu", "swish"]
|
20 |
+
out = causal_conv1d_cuda.causal_conv1d_fwd(x, weight, bias, ctx.activation)
|
21 |
+
return out
|
22 |
+
|
23 |
+
@staticmethod
|
24 |
+
def backward(ctx, dout):
|
25 |
+
x, weight, bias = ctx.saved_tensors
|
26 |
+
if dout.stride(2) != 1 and dout.stride(1) != 1:
|
27 |
+
dout = dout.contiguous()
|
28 |
+
# The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
|
29 |
+
# backward of conv1d with the backward of chunk).
|
30 |
+
# Here we just pass in None and dx will be allocated in the C++ code.
|
31 |
+
dx, dweight, dbias = causal_conv1d_cuda.causal_conv1d_bwd(
|
32 |
+
x, weight, bias, dout, None, ctx.activation
|
33 |
+
)
|
34 |
+
return dx, dweight, dbias if bias is not None else None, None
|
35 |
+
|
36 |
+
|
37 |
+
def causal_conv1d_fn(x, weight, bias=None, activation=None):
|
38 |
+
"""
|
39 |
+
x: (batch, dim, seqlen)
|
40 |
+
weight: (dim, width)
|
41 |
+
bias: (dim,)
|
42 |
+
activation: either None or "silu" or "swish"
|
43 |
+
|
44 |
+
out: (batch, dim, seqlen)
|
45 |
+
"""
|
46 |
+
return CausalConv1dFn.apply(x, weight, bias, activation)
|
47 |
+
|
48 |
+
|
49 |
+
def causal_conv1d_ref(x, weight, bias=None, activation=None):
|
50 |
+
"""
|
51 |
+
x: (batch, dim, seqlen)
|
52 |
+
weight: (dim, width)
|
53 |
+
bias: (dim,)
|
54 |
+
|
55 |
+
out: (batch, dim, seqlen)
|
56 |
+
"""
|
57 |
+
if activation not in [None, "silu", "swish"]:
|
58 |
+
raise NotImplementedError("activation must be None, silu, or swish")
|
59 |
+
dtype_in = x.dtype
|
60 |
+
x = x.to(weight.dtype)
|
61 |
+
seqlen = x.shape[-1]
|
62 |
+
dim, width = weight.shape
|
63 |
+
out = F.conv1d(x, weight.unsqueeze(1), bias, padding=width - 1, groups=dim)
|
64 |
+
out = out[..., :seqlen]
|
65 |
+
return (out if activation is None else F.silu(out)).to(dtype=dtype_in)
|
66 |
+
|
67 |
+
|
68 |
+
def causal_conv1d_update(x, conv_state, weight, bias=None, activation=None):
|
69 |
+
"""
|
70 |
+
x: (batch, dim)
|
71 |
+
conv_state: (batch, dim, width)
|
72 |
+
weight: (dim, width)
|
73 |
+
bias: (dim,)
|
74 |
+
|
75 |
+
out: (batch, dim)
|
76 |
+
"""
|
77 |
+
if activation not in [None, "silu", "swish"]:
|
78 |
+
raise NotImplementedError("activation must be None, silu, or swish")
|
79 |
+
activation = activation in ["silu", "swish"]
|
80 |
+
return causal_conv1d_cuda.causal_conv1d_update(x, conv_state, weight, bias, activation)
|
81 |
+
|
82 |
+
|
83 |
+
def causal_conv1d_update_ref(x, conv_state, weight, bias=None, activation=None):
|
84 |
+
"""
|
85 |
+
x: (batch, dim)
|
86 |
+
conv_state: (batch, dim, width)
|
87 |
+
weight: (dim, width)
|
88 |
+
bias: (dim,)
|
89 |
+
|
90 |
+
out: (batch, dim)
|
91 |
+
"""
|
92 |
+
if activation not in [None, "silu", "swish"]:
|
93 |
+
raise NotImplementedError("activation must be None, silu, or swish")
|
94 |
+
dtype_in = x.dtype
|
95 |
+
batch, dim = x.shape
|
96 |
+
width = weight.shape[1]
|
97 |
+
assert conv_state.shape == (batch, dim, width)
|
98 |
+
assert weight.shape == (dim, width)
|
99 |
+
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
|
100 |
+
conv_state[:, :, -1] = x
|
101 |
+
out = torch.sum(conv_state * weight, dim=-1) # (B D)
|
102 |
+
if bias is not None:
|
103 |
+
out += bias
|
104 |
+
return (out if activation is None else F.silu(out)).to(dtype=dtype_in)
|
causal-conv1d/csrc/causal_conv1d.cpp
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#include <ATen/cuda/CUDAContext.h>
|
6 |
+
#include <c10/cuda/CUDAGuard.h>
|
7 |
+
#include <torch/extension.h>
|
8 |
+
#include <vector>
|
9 |
+
|
10 |
+
#include "causal_conv1d.h"
|
11 |
+
|
12 |
+
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
|
13 |
+
|
14 |
+
#define DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
|
15 |
+
if (ITYPE == at::ScalarType::Half) { \
|
16 |
+
using input_t = at::Half; \
|
17 |
+
__VA_ARGS__(); \
|
18 |
+
} else if (ITYPE == at::ScalarType::BFloat16) { \
|
19 |
+
using input_t = at::BFloat16; \
|
20 |
+
__VA_ARGS__(); \
|
21 |
+
} else if (ITYPE == at::ScalarType::Float) { \
|
22 |
+
using input_t = float; \
|
23 |
+
__VA_ARGS__(); \
|
24 |
+
} else { \
|
25 |
+
AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
|
26 |
+
}
|
27 |
+
|
28 |
+
#define DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(WTYPE, NAME, ...) \
|
29 |
+
if (WTYPE == at::ScalarType::Half) { \
|
30 |
+
using weight_t = at::Half; \
|
31 |
+
__VA_ARGS__(); \
|
32 |
+
} else if (WTYPE == at::ScalarType::BFloat16) { \
|
33 |
+
using weight_t = at::BFloat16; \
|
34 |
+
__VA_ARGS__(); \
|
35 |
+
} else if (WTYPE == at::ScalarType::Float) { \
|
36 |
+
using weight_t = float; \
|
37 |
+
__VA_ARGS__(); \
|
38 |
+
} else { \
|
39 |
+
AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
|
40 |
+
}
|
41 |
+
|
42 |
+
template<typename input_t, typename weight_t>
|
43 |
+
void causal_conv1d_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream);
|
44 |
+
template <typename input_t, typename weight_t>
|
45 |
+
void causal_conv1d_channellast_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream);
|
46 |
+
|
47 |
+
template<typename input_t, typename weight_t>
|
48 |
+
void causal_conv1d_bwd_cuda(ConvParamsBwd ¶ms, cudaStream_t stream);
|
49 |
+
template<typename input_t, typename weight_t>
|
50 |
+
void causal_conv1d_channellast_bwd_cuda(ConvParamsBwd ¶ms, cudaStream_t stream);
|
51 |
+
|
52 |
+
template<typename input_t, typename weight_t>
|
53 |
+
void causal_conv1d_update_cuda(ConvParamsBase ¶ms, cudaStream_t stream);
|
54 |
+
|
55 |
+
void set_conv_params_fwd(ConvParamsBase ¶ms,
|
56 |
+
// sizes
|
57 |
+
const size_t batch,
|
58 |
+
const size_t dim,
|
59 |
+
const size_t seqlen,
|
60 |
+
const size_t width,
|
61 |
+
// device pointers
|
62 |
+
const at::Tensor x,
|
63 |
+
const at::Tensor weight,
|
64 |
+
const at::Tensor out,
|
65 |
+
void* bias_ptr,
|
66 |
+
bool silu_activation) {
|
67 |
+
|
68 |
+
// Reset the parameters
|
69 |
+
memset(¶ms, 0, sizeof(params));
|
70 |
+
|
71 |
+
params.batch = batch;
|
72 |
+
params.dim = dim;
|
73 |
+
params.seqlen = seqlen;
|
74 |
+
params.width = width;
|
75 |
+
|
76 |
+
params.silu_activation = silu_activation;
|
77 |
+
|
78 |
+
// Set the pointers and strides.
|
79 |
+
params.x_ptr = x.data_ptr();
|
80 |
+
params.weight_ptr = weight.data_ptr();
|
81 |
+
params.bias_ptr = bias_ptr;
|
82 |
+
params.out_ptr = out.data_ptr();
|
83 |
+
// All stride are in elements, not bytes.
|
84 |
+
params.x_batch_stride = x.stride(0);
|
85 |
+
params.x_c_stride = x.stride(1);
|
86 |
+
params.x_l_stride = x.stride(-1);
|
87 |
+
params.weight_c_stride = weight.stride(0);
|
88 |
+
params.weight_width_stride = weight.stride(1);
|
89 |
+
params.out_batch_stride = out.stride(0);
|
90 |
+
params.out_c_stride = out.stride(1);
|
91 |
+
params.out_l_stride = out.stride(-1);
|
92 |
+
}
|
93 |
+
|
94 |
+
|
95 |
+
void set_conv_params_bwd(ConvParamsBwd ¶ms,
|
96 |
+
// sizes
|
97 |
+
const size_t batch,
|
98 |
+
const size_t dim,
|
99 |
+
const size_t seqlen,
|
100 |
+
const size_t width,
|
101 |
+
// device pointers
|
102 |
+
const at::Tensor x,
|
103 |
+
const at::Tensor weight,
|
104 |
+
void* bias_ptr,
|
105 |
+
const at::Tensor dout,
|
106 |
+
const at::Tensor dx,
|
107 |
+
const at::Tensor dweight,
|
108 |
+
void* dbias_ptr,
|
109 |
+
bool silu_activation) {
|
110 |
+
// Pass in "dout" instead of "out", we're not gonna use "out" at all.
|
111 |
+
set_conv_params_fwd(params, batch, dim, seqlen, width,
|
112 |
+
x, weight, dout, bias_ptr, silu_activation);
|
113 |
+
|
114 |
+
// Set the pointers and strides.
|
115 |
+
params.dout_ptr = dout.data_ptr();
|
116 |
+
params.dx_ptr = dx.data_ptr();
|
117 |
+
params.dweight_ptr = dweight.data_ptr();
|
118 |
+
params.dbias_ptr = dbias_ptr;
|
119 |
+
// All stride are in elements, not bytes.
|
120 |
+
params.dout_batch_stride = dout.stride(0);
|
121 |
+
params.dout_c_stride = dout.stride(1);
|
122 |
+
params.dout_l_stride = dout.stride(2);
|
123 |
+
params.dweight_c_stride = dweight.stride(0);
|
124 |
+
params.dweight_width_stride = dweight.stride(1);
|
125 |
+
params.dx_batch_stride = dx.stride(0);
|
126 |
+
params.dx_c_stride = dx.stride(1);
|
127 |
+
params.dx_l_stride = dx.stride(2);
|
128 |
+
}
|
129 |
+
|
130 |
+
at::Tensor
|
131 |
+
causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight,
|
132 |
+
const c10::optional<at::Tensor> &bias_,
|
133 |
+
bool silu_activation) {
|
134 |
+
auto input_type = x.scalar_type();
|
135 |
+
auto weight_type = weight.scalar_type();
|
136 |
+
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
|
137 |
+
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
|
138 |
+
|
139 |
+
TORCH_CHECK(x.is_cuda());
|
140 |
+
TORCH_CHECK(weight.is_cuda());
|
141 |
+
|
142 |
+
const auto sizes = x.sizes();
|
143 |
+
const int batch_size = sizes[0];
|
144 |
+
const int dim = sizes[1];
|
145 |
+
const int seqlen = sizes[2];
|
146 |
+
const int width = weight.size(-1);
|
147 |
+
|
148 |
+
CHECK_SHAPE(x, batch_size, dim, seqlen);
|
149 |
+
CHECK_SHAPE(weight, dim, width);
|
150 |
+
|
151 |
+
TORCH_CHECK(x.stride(2) == 1 || x.stride(1) == 1);
|
152 |
+
const bool is_channel_last = x.stride(1) == 1 && x.stride(2) > 1;
|
153 |
+
|
154 |
+
if (is_channel_last) {
|
155 |
+
TORCH_CHECK(dim % 8 == 0, "causal_conv1d only supports channel dimension divisible by 8 for now");
|
156 |
+
}
|
157 |
+
TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
|
158 |
+
|
159 |
+
|
160 |
+
if (bias_.has_value()) {
|
161 |
+
auto bias = bias_.value();
|
162 |
+
TORCH_CHECK(bias.scalar_type() == weight_type);
|
163 |
+
TORCH_CHECK(bias.is_cuda());
|
164 |
+
TORCH_CHECK(bias.stride(-1) == 1);
|
165 |
+
CHECK_SHAPE(bias, dim);
|
166 |
+
}
|
167 |
+
|
168 |
+
at::Tensor out = torch::empty_like(x);
|
169 |
+
|
170 |
+
ConvParamsBase params;
|
171 |
+
set_conv_params_fwd(params, batch_size, dim, seqlen, width, x, weight, out,
|
172 |
+
bias_.has_value() ? bias_.value().data_ptr() : nullptr,
|
173 |
+
silu_activation);
|
174 |
+
|
175 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
176 |
+
// Cast to char to avoid compiler warning about narrowing
|
177 |
+
at::cuda::CUDAGuard device_guard{(char)x.get_device()};
|
178 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
179 |
+
DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_fwd", [&] {
|
180 |
+
DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_fwd", [&] {
|
181 |
+
if (!is_channel_last) {
|
182 |
+
causal_conv1d_fwd_cuda<input_t, weight_t>(params, stream);
|
183 |
+
} else {
|
184 |
+
causal_conv1d_channellast_fwd_cuda<input_t, weight_t>(params, stream);
|
185 |
+
}
|
186 |
+
});
|
187 |
+
});
|
188 |
+
return out;
|
189 |
+
}
|
190 |
+
|
191 |
+
std::vector<at::Tensor>
|
192 |
+
causal_conv1d_bwd(const at::Tensor &x, const at::Tensor &weight,
|
193 |
+
const c10::optional<at::Tensor> &bias_,
|
194 |
+
at::Tensor &dout,
|
195 |
+
c10::optional<at::Tensor> &dx_,
|
196 |
+
bool silu_activation) {
|
197 |
+
auto input_type = x.scalar_type();
|
198 |
+
auto weight_type = weight.scalar_type();
|
199 |
+
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
|
200 |
+
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
|
201 |
+
|
202 |
+
TORCH_CHECK(x.is_cuda());
|
203 |
+
TORCH_CHECK(weight.is_cuda());
|
204 |
+
TORCH_CHECK(dout.is_cuda());
|
205 |
+
|
206 |
+
const auto sizes = x.sizes();
|
207 |
+
const int batch_size = sizes[0];
|
208 |
+
const int dim = sizes[1];
|
209 |
+
const int seqlen = sizes[2];
|
210 |
+
const int width = weight.size(-1);
|
211 |
+
|
212 |
+
TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
|
213 |
+
|
214 |
+
CHECK_SHAPE(x, batch_size, dim, seqlen);
|
215 |
+
CHECK_SHAPE(weight, dim, width);
|
216 |
+
CHECK_SHAPE(dout, batch_size, dim, seqlen);
|
217 |
+
|
218 |
+
TORCH_CHECK(x.stride(2) == 1 || x.stride(1) == 1);
|
219 |
+
const bool is_channel_last = x.stride(1) == 1 && x.stride(2) > 1;
|
220 |
+
if (!is_channel_last && dout.stride(2) != 1) { dout = dout.contiguous(); }
|
221 |
+
if (is_channel_last && dout.stride(1) != 1) { dout = dout.transpose(-1, -2).contiguous().transpose(-1, -2); }
|
222 |
+
|
223 |
+
if (bias_.has_value()) {
|
224 |
+
auto bias = bias_.value();
|
225 |
+
TORCH_CHECK(bias.scalar_type() == weight_type);
|
226 |
+
TORCH_CHECK(bias.is_cuda());
|
227 |
+
TORCH_CHECK(bias.stride(-1) == 1);
|
228 |
+
CHECK_SHAPE(bias, dim);
|
229 |
+
}
|
230 |
+
|
231 |
+
at::Tensor dx;
|
232 |
+
if (dx_.has_value()) {
|
233 |
+
dx = dx_.value();
|
234 |
+
TORCH_CHECK(dx.scalar_type() == input_type);
|
235 |
+
TORCH_CHECK(dx.is_cuda());
|
236 |
+
CHECK_SHAPE(dx, batch_size, dim, seqlen);
|
237 |
+
if (!is_channel_last) { TORCH_CHECK(dx.stride(2) == 1); }
|
238 |
+
if (is_channel_last) { TORCH_CHECK(dx.stride(1) == 1); }
|
239 |
+
} else {
|
240 |
+
dx = torch::empty_like(x);
|
241 |
+
}
|
242 |
+
|
243 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
244 |
+
// Cast to char to avoid compiler warning about narrowing
|
245 |
+
at::cuda::CUDAGuard device_guard{(char)x.get_device()};
|
246 |
+
|
247 |
+
at::Tensor dweight = torch::zeros_like(weight, weight.options().dtype(at::kFloat));
|
248 |
+
at::Tensor dbias;
|
249 |
+
if (bias_.has_value()) { dbias = torch::zeros_like(bias_.value(), bias_.value().options().dtype(at::kFloat)); }
|
250 |
+
|
251 |
+
ConvParamsBwd params;
|
252 |
+
set_conv_params_bwd(params, batch_size, dim, seqlen, width,
|
253 |
+
x, weight, bias_.has_value() ? bias_.value().data_ptr() : nullptr,
|
254 |
+
dout, dx, dweight, bias_.has_value() ? dbias.data_ptr() : nullptr,
|
255 |
+
silu_activation);
|
256 |
+
|
257 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
258 |
+
DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_bwd", [&] {
|
259 |
+
DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_bwd", [&] {
|
260 |
+
if (!is_channel_last) {
|
261 |
+
causal_conv1d_bwd_cuda<input_t, weight_t>(params, stream);
|
262 |
+
} else {
|
263 |
+
causal_conv1d_channellast_bwd_cuda<input_t, weight_t>(params, stream);
|
264 |
+
}
|
265 |
+
});
|
266 |
+
});
|
267 |
+
return {dx, dweight.to(weight.dtype()), bias_.has_value() ? dbias.to(bias_.value().dtype()) : dbias};
|
268 |
+
}
|
269 |
+
|
270 |
+
at::Tensor
|
271 |
+
causal_conv1d_update(const at::Tensor &x,
|
272 |
+
const at::Tensor &conv_state,
|
273 |
+
const at::Tensor &weight,
|
274 |
+
const c10::optional<at::Tensor> &bias_,
|
275 |
+
bool silu_activation) {
|
276 |
+
auto input_type = x.scalar_type();
|
277 |
+
auto weight_type = weight.scalar_type();
|
278 |
+
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
|
279 |
+
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
|
280 |
+
TORCH_CHECK(conv_state.scalar_type() == input_type);
|
281 |
+
|
282 |
+
TORCH_CHECK(x.is_cuda());
|
283 |
+
TORCH_CHECK(conv_state.is_cuda());
|
284 |
+
TORCH_CHECK(weight.is_cuda());
|
285 |
+
|
286 |
+
const auto sizes = x.sizes();
|
287 |
+
const int batch_size = sizes[0];
|
288 |
+
const int dim = sizes[1];
|
289 |
+
const int width = weight.size(-1);
|
290 |
+
|
291 |
+
CHECK_SHAPE(x, batch_size, dim);
|
292 |
+
CHECK_SHAPE(conv_state, batch_size, dim, width);
|
293 |
+
CHECK_SHAPE(weight, dim, width);
|
294 |
+
|
295 |
+
TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
|
296 |
+
|
297 |
+
if (bias_.has_value()) {
|
298 |
+
auto bias = bias_.value();
|
299 |
+
TORCH_CHECK(bias.scalar_type() == weight_type);
|
300 |
+
TORCH_CHECK(bias.is_cuda());
|
301 |
+
TORCH_CHECK(bias.stride(-1) == 1);
|
302 |
+
CHECK_SHAPE(bias, dim);
|
303 |
+
}
|
304 |
+
|
305 |
+
at::Tensor out = torch::empty_like(x);
|
306 |
+
|
307 |
+
ConvParamsBase params;
|
308 |
+
set_conv_params_fwd(params, batch_size, dim, /*seqlen=*/1, width, x, weight, out,
|
309 |
+
bias_.has_value() ? bias_.value().data_ptr() : nullptr,
|
310 |
+
silu_activation);
|
311 |
+
params.conv_state_ptr = conv_state.data_ptr();
|
312 |
+
// All stride are in elements, not bytes.
|
313 |
+
params.conv_state_batch_stride = conv_state.stride(0);
|
314 |
+
params.conv_state_c_stride = conv_state.stride(1);
|
315 |
+
params.conv_state_l_stride = conv_state.stride(2);
|
316 |
+
|
317 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
318 |
+
// Cast to char to avoid compiler warning about narrowing
|
319 |
+
at::cuda::CUDAGuard device_guard{(char)x.get_device()};
|
320 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
321 |
+
DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_update", [&] {
|
322 |
+
DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_update", [&] {
|
323 |
+
causal_conv1d_update_cuda<input_t, weight_t>(params, stream);
|
324 |
+
});
|
325 |
+
});
|
326 |
+
return out;
|
327 |
+
}
|
328 |
+
|
329 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
330 |
+
m.def("causal_conv1d_fwd", &causal_conv1d_fwd, "Causal conv1d forward");
|
331 |
+
m.def("causal_conv1d_bwd", &causal_conv1d_bwd, "Causal conv1d backward");
|
332 |
+
m.def("causal_conv1d_update", &causal_conv1d_update, "Causal conv1d update");
|
333 |
+
}
|
causal-conv1d/csrc/causal_conv1d.h
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
8 |
+
|
9 |
+
struct ConvParamsBase {
|
10 |
+
using index_t = uint32_t;
|
11 |
+
|
12 |
+
int batch, dim, seqlen, width;
|
13 |
+
bool silu_activation;
|
14 |
+
|
15 |
+
index_t x_batch_stride;
|
16 |
+
index_t x_c_stride;
|
17 |
+
index_t x_l_stride;
|
18 |
+
index_t weight_c_stride;
|
19 |
+
index_t weight_width_stride;
|
20 |
+
index_t out_batch_stride;
|
21 |
+
index_t out_c_stride;
|
22 |
+
index_t out_l_stride;
|
23 |
+
|
24 |
+
index_t conv_state_batch_stride;
|
25 |
+
index_t conv_state_c_stride;
|
26 |
+
index_t conv_state_l_stride;
|
27 |
+
|
28 |
+
// Common data pointers.
|
29 |
+
void *__restrict__ x_ptr;
|
30 |
+
void *__restrict__ weight_ptr;
|
31 |
+
void *__restrict__ bias_ptr;
|
32 |
+
void *__restrict__ out_ptr;
|
33 |
+
|
34 |
+
void *__restrict__ conv_state_ptr;
|
35 |
+
};
|
36 |
+
|
37 |
+
struct ConvParamsBwd: public ConvParamsBase {
|
38 |
+
index_t dx_batch_stride;
|
39 |
+
index_t dx_c_stride;
|
40 |
+
index_t dx_l_stride;
|
41 |
+
index_t dweight_c_stride;
|
42 |
+
index_t dweight_width_stride;
|
43 |
+
index_t dout_batch_stride;
|
44 |
+
index_t dout_c_stride;
|
45 |
+
index_t dout_l_stride;
|
46 |
+
|
47 |
+
// Common data pointers.
|
48 |
+
void *__restrict__ dx_ptr;
|
49 |
+
void *__restrict__ dweight_ptr;
|
50 |
+
void *__restrict__ dbias_ptr;
|
51 |
+
void *__restrict__ dout_ptr;
|
52 |
+
};
|
53 |
+
|
causal-conv1d/csrc/causal_conv1d_bwd.cu
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#include <c10/util/BFloat16.h>
|
6 |
+
#include <c10/util/Half.h>
|
7 |
+
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
|
8 |
+
|
9 |
+
#include <cub/block/block_load.cuh>
|
10 |
+
#include <cub/block/block_store.cuh>
|
11 |
+
#include <cub/block/block_reduce.cuh>
|
12 |
+
|
13 |
+
#include "causal_conv1d.h"
|
14 |
+
#include "causal_conv1d_common.h"
|
15 |
+
#include "static_switch.h"
|
16 |
+
|
17 |
+
template<int kNThreads_, int kWidth_, bool kSiluAct_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
|
18 |
+
struct Causal_conv1d_bwd_kernel_traits {
|
19 |
+
using input_t = input_t_;
|
20 |
+
using weight_t = weight_t_;
|
21 |
+
static constexpr int kNThreads = kNThreads_;
|
22 |
+
static constexpr int kWidth = kWidth_;
|
23 |
+
static constexpr bool kSiluAct = kSiluAct_;
|
24 |
+
static constexpr int kNBytes = sizeof(input_t);
|
25 |
+
static_assert(kNBytes == 2 || kNBytes == 4);
|
26 |
+
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
|
27 |
+
static_assert(kWidth <= kNElts);
|
28 |
+
// It's possible that we need to do 2 rounds of exchange if input_t is 16 bits
|
29 |
+
// (since then we'd have 8 values of float, and each round we can exchange 4 floats).
|
30 |
+
static constexpr int kNExchangeRounds = sizeof(float) / sizeof(input_t);
|
31 |
+
static constexpr bool kIsVecLoad = kIsVecLoad_;
|
32 |
+
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
|
33 |
+
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
34 |
+
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>;
|
35 |
+
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>;
|
36 |
+
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>;
|
37 |
+
using BlockReduceFloatT = cub::BlockReduce<float, kNThreads>;
|
38 |
+
static constexpr int kSmemIOSize = kIsVecLoad
|
39 |
+
? 0
|
40 |
+
: std::max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)});
|
41 |
+
static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts * (!kSiluAct ? 1 : kNExchangeRounds + 1);
|
42 |
+
static constexpr int kSmemSize = std::max({kSmemExchangeSize,
|
43 |
+
int(sizeof(typename BlockReduceFloatT::TempStorage))}) + (kIsVecLoad ? 0 : kSmemIOSize);
|
44 |
+
};
|
45 |
+
|
46 |
+
template<typename Ktraits>
|
47 |
+
__global__ __launch_bounds__(Ktraits::kNThreads)
|
48 |
+
void causal_conv1d_bwd_kernel(ConvParamsBwd params) {
|
49 |
+
constexpr int kWidth = Ktraits::kWidth;
|
50 |
+
constexpr int kNThreads = Ktraits::kNThreads;
|
51 |
+
constexpr bool kSiluAct = Ktraits::kSiluAct;
|
52 |
+
constexpr int kNElts = Ktraits::kNElts;
|
53 |
+
constexpr int kNExchangeRounds = Ktraits::kNExchangeRounds;
|
54 |
+
constexpr bool kIsVecLoad = Ktraits::kIsVecLoad;
|
55 |
+
using input_t = typename Ktraits::input_t;
|
56 |
+
using vec_t = typename Ktraits::vec_t;
|
57 |
+
using weight_t = typename Ktraits::weight_t;
|
58 |
+
|
59 |
+
// Shared memory.
|
60 |
+
extern __shared__ char smem_[];
|
61 |
+
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
|
62 |
+
auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_);
|
63 |
+
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
|
64 |
+
auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_);
|
65 |
+
vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize);
|
66 |
+
vec_t *smem_exchange_x = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize) + kNThreads * kNExchangeRounds;
|
67 |
+
auto& smem_reduce_float = *reinterpret_cast<typename Ktraits::BlockReduceFloatT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
|
68 |
+
|
69 |
+
const int tidx = threadIdx.x;
|
70 |
+
const int batch_id = blockIdx.x;
|
71 |
+
const int dim_id = blockIdx.y;
|
72 |
+
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
|
73 |
+
+ dim_id * params.x_c_stride;
|
74 |
+
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + dim_id * params.weight_c_stride;
|
75 |
+
input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride
|
76 |
+
+ dim_id * params.dout_c_stride;
|
77 |
+
input_t *dx = reinterpret_cast<input_t *>(params.dx_ptr) + batch_id * params.dx_batch_stride
|
78 |
+
+ dim_id * params.dx_c_stride;
|
79 |
+
float *dweight = reinterpret_cast<float *>(params.dweight_ptr) + dim_id * params.dweight_c_stride;
|
80 |
+
float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[dim_id]);
|
81 |
+
|
82 |
+
// Thread kNThreads - 1 will load the first elements of the next chunk so we initialize those to 0.
|
83 |
+
if (tidx == 0) {
|
84 |
+
if constexpr (!kSiluAct) {
|
85 |
+
input_t zeros[kNElts] = {0};
|
86 |
+
smem_exchange[0] = reinterpret_cast<vec_t *>(zeros)[0];
|
87 |
+
} else {
|
88 |
+
float zeros[kNElts] = {0};
|
89 |
+
#pragma unroll
|
90 |
+
for (int r = 0; r < kNExchangeRounds; ++r) {
|
91 |
+
smem_exchange[r * kNThreads] = reinterpret_cast<vec_t *>(zeros)[r];
|
92 |
+
}
|
93 |
+
}
|
94 |
+
}
|
95 |
+
|
96 |
+
float weight_vals[kWidth];
|
97 |
+
#pragma unroll
|
98 |
+
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = weight[i * params.weight_width_stride]; }
|
99 |
+
|
100 |
+
float dweight_vals[kWidth] = {0};
|
101 |
+
float dbias_val = 0;
|
102 |
+
|
103 |
+
constexpr int kChunkSize = kNThreads * kNElts;
|
104 |
+
const int n_chunks = (params.seqlen + kChunkSize - 1) / kChunkSize;
|
105 |
+
x += (n_chunks - 1) * kChunkSize;
|
106 |
+
dout += (n_chunks - 1) * kChunkSize;
|
107 |
+
dx += (n_chunks - 1) * kChunkSize;
|
108 |
+
for (int chunk = n_chunks - 1; chunk >= 0; --chunk) {
|
109 |
+
input_t x_vals_load[2 * kNElts] = {0};
|
110 |
+
input_t dout_vals_load[2 * kNElts] = {0};
|
111 |
+
if constexpr(kIsVecLoad) {
|
112 |
+
Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (params.seqlen - chunk * kChunkSize) / kNElts);
|
113 |
+
Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(dout), *reinterpret_cast<vec_t (*)[1]>(&dout_vals_load[0]), (params.seqlen - chunk * kChunkSize) / kNElts);
|
114 |
+
} else {
|
115 |
+
__syncthreads();
|
116 |
+
Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), params.seqlen - chunk * kChunkSize);
|
117 |
+
__syncthreads();
|
118 |
+
Ktraits::BlockLoadT(smem_load).Load(dout, *reinterpret_cast<input_t (*)[kNElts]>(&dout_vals_load[0]), params.seqlen - chunk * kChunkSize);
|
119 |
+
}
|
120 |
+
float dout_vals[2 * kNElts], x_vals[2 * kNElts];
|
121 |
+
if constexpr (!kSiluAct) {
|
122 |
+
__syncthreads();
|
123 |
+
// Thread 0 don't write yet, so that thread kNThreads - 1 can read
|
124 |
+
// the first elements of the next chunk.
|
125 |
+
if (tidx > 0) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(dout_vals_load)[0]; }
|
126 |
+
__syncthreads();
|
127 |
+
reinterpret_cast<vec_t *>(dout_vals_load)[1] = smem_exchange[tidx < kNThreads - 1 ? tidx + 1 : 0];
|
128 |
+
__syncthreads();
|
129 |
+
// Now thread 0 can write the first elements of the current chunk.
|
130 |
+
if (tidx == 0) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(dout_vals_load)[0]; }
|
131 |
+
#pragma unroll
|
132 |
+
for (int i = 0; i < 2 * kNElts; ++i) {
|
133 |
+
dout_vals[i] = float(dout_vals_load[i]);
|
134 |
+
x_vals[i] = float(x_vals_load[i]);
|
135 |
+
}
|
136 |
+
} else {
|
137 |
+
if (tidx == 0 && chunk > 0) {
|
138 |
+
if constexpr(kIsVecLoad) {
|
139 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = reinterpret_cast<vec_t *>(x)[-1];
|
140 |
+
} else {
|
141 |
+
#pragma unroll
|
142 |
+
for (int i = 0; i < kNElts; ++i) {
|
143 |
+
if (chunk * kChunkSize + i < params.seqlen) { x_vals_load[i] = x[-kNElts + i]; }
|
144 |
+
}
|
145 |
+
}
|
146 |
+
}
|
147 |
+
__syncthreads();
|
148 |
+
smem_exchange_x[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1];
|
149 |
+
__syncthreads();
|
150 |
+
if (tidx > 0) { reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange_x[tidx - 1]; }
|
151 |
+
#pragma unroll
|
152 |
+
for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); }
|
153 |
+
// Recompute the output
|
154 |
+
#pragma unroll
|
155 |
+
for (int i = 0; i < kNElts; ++i) {
|
156 |
+
float out_val = bias_val;
|
157 |
+
#pragma unroll
|
158 |
+
for (int w = 0; w < kWidth; ++w) {
|
159 |
+
out_val += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)];
|
160 |
+
}
|
161 |
+
float out_sigmoid_val = 1.0f / (1.0f + expf(-out_val));
|
162 |
+
dout_vals[i] = float(dout_vals_load[i]) * out_sigmoid_val
|
163 |
+
* (1.0f + out_val * (1.0f - out_sigmoid_val));
|
164 |
+
}
|
165 |
+
// Exchange the dout_vals. It's possible that we need to do 2 rounds of exchange
|
166 |
+
// if input_t is 16 bits (since then we'd have 8 values of float)
|
167 |
+
__syncthreads();
|
168 |
+
// Thread 0 don't write yet, so that thread kNThreads - 1 can read
|
169 |
+
// the first elements of the next chunk.
|
170 |
+
if (tidx > 0) {
|
171 |
+
#pragma unroll
|
172 |
+
for (int r = 0; r < kNExchangeRounds; ++r) {
|
173 |
+
smem_exchange[r * kNThreads + tidx] = reinterpret_cast<vec_t *>(dout_vals)[r];
|
174 |
+
}
|
175 |
+
}
|
176 |
+
__syncthreads();
|
177 |
+
#pragma unroll
|
178 |
+
for (int r = 0; r < kNExchangeRounds; ++r) {
|
179 |
+
reinterpret_cast<vec_t *>(dout_vals)[kNExchangeRounds + r]
|
180 |
+
= smem_exchange[r * kNThreads + (tidx < kNThreads - 1 ? tidx + 1 : 0)];
|
181 |
+
}
|
182 |
+
__syncthreads();
|
183 |
+
// Now thread 0 can write the first elements of the current chunk.
|
184 |
+
if (tidx == 0) {
|
185 |
+
#pragma unroll
|
186 |
+
for (int r = 0; r < kNExchangeRounds; ++r) {
|
187 |
+
smem_exchange[r * kNThreads + tidx] = reinterpret_cast<vec_t *>(dout_vals)[r];
|
188 |
+
}
|
189 |
+
}
|
190 |
+
}
|
191 |
+
dout -= kChunkSize;
|
192 |
+
x -= kChunkSize;
|
193 |
+
|
194 |
+
#pragma unroll
|
195 |
+
for (int i = 0; i < kNElts; ++i) { dbias_val += dout_vals[i]; }
|
196 |
+
|
197 |
+
float dx_vals[kNElts] = {0};
|
198 |
+
#pragma unroll
|
199 |
+
for (int i = 0; i < kNElts; ++i) {
|
200 |
+
#pragma unroll
|
201 |
+
for (int w = 0; w < kWidth; ++w) {
|
202 |
+
dx_vals[i] += weight_vals[w] * dout_vals[i + kWidth - w - 1];
|
203 |
+
}
|
204 |
+
}
|
205 |
+
|
206 |
+
input_t dx_vals_store[kNElts];
|
207 |
+
#pragma unroll
|
208 |
+
for (int i = 0; i < kNElts; ++i) { dx_vals_store[i] = dx_vals[i]; }
|
209 |
+
if constexpr(kIsVecLoad) {
|
210 |
+
Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(dx), reinterpret_cast<vec_t (&)[1]>(dx_vals_store), (params.seqlen - chunk * kChunkSize) / kNElts);
|
211 |
+
} else {
|
212 |
+
Ktraits::BlockStoreT(smem_store).Store(dx, dx_vals_store, params.seqlen - chunk * kChunkSize);
|
213 |
+
}
|
214 |
+
dx -= kChunkSize;
|
215 |
+
|
216 |
+
#pragma unroll
|
217 |
+
for (int w = 0; w < kWidth; ++w) {
|
218 |
+
#pragma unroll
|
219 |
+
for (int i = 0; i < kNElts; ++i) {
|
220 |
+
dweight_vals[w] += x_vals[kNElts + i] * dout_vals[i + kWidth - w - 1];
|
221 |
+
}
|
222 |
+
}
|
223 |
+
}
|
224 |
+
|
225 |
+
#pragma unroll
|
226 |
+
for (int w = 0; w < kWidth; ++w) {
|
227 |
+
__syncthreads();
|
228 |
+
dweight_vals[w] = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dweight_vals[w]);
|
229 |
+
if (tidx == 0) {
|
230 |
+
atomicAdd(&reinterpret_cast<float *>(dweight)[w * params.dweight_width_stride], dweight_vals[w]);
|
231 |
+
}
|
232 |
+
}
|
233 |
+
if (params.bias_ptr != nullptr) {
|
234 |
+
__syncthreads();
|
235 |
+
dbias_val = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dbias_val);
|
236 |
+
if (tidx == 0) {
|
237 |
+
atomicAdd(&reinterpret_cast<float *>(params.dbias_ptr)[dim_id], dbias_val);
|
238 |
+
}
|
239 |
+
}
|
240 |
+
}
|
241 |
+
|
242 |
+
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
|
243 |
+
void causal_conv1d_bwd_launch(ConvParamsBwd ¶ms, cudaStream_t stream) {
|
244 |
+
static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8;
|
245 |
+
BOOL_SWITCH(params.seqlen % kNElts == 0, kIsVecLoad, [&] {
|
246 |
+
BOOL_SWITCH(params.silu_activation, kSiluAct, [&] {
|
247 |
+
using Ktraits = Causal_conv1d_bwd_kernel_traits<kNThreads, kWidth, kSiluAct, kIsVecLoad, input_t, weight_t>;
|
248 |
+
constexpr int kSmemSize = Ktraits::kSmemSize;
|
249 |
+
dim3 grid(params.batch, params.dim);
|
250 |
+
auto kernel = &causal_conv1d_bwd_kernel<Ktraits>;
|
251 |
+
if (kSmemSize >= 48 * 1024) {
|
252 |
+
C10_CUDA_CHECK(cudaFuncSetAttribute(
|
253 |
+
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
|
254 |
+
}
|
255 |
+
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
|
256 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
257 |
+
});
|
258 |
+
});
|
259 |
+
}
|
260 |
+
|
261 |
+
template<typename input_t, typename weight_t>
|
262 |
+
void causal_conv1d_bwd_cuda(ConvParamsBwd ¶ms, cudaStream_t stream) {
|
263 |
+
if (params.width == 2) {
|
264 |
+
causal_conv1d_bwd_launch<128, 2, input_t, weight_t>(params, stream);
|
265 |
+
} else if (params.width == 3) {
|
266 |
+
causal_conv1d_bwd_launch<128, 3, input_t, weight_t>(params, stream);
|
267 |
+
} else if (params.width == 4) {
|
268 |
+
causal_conv1d_bwd_launch<128, 4, input_t, weight_t>(params, stream);
|
269 |
+
}
|
270 |
+
}
|
271 |
+
|
272 |
+
template<int kNThreads_, int kWidth_, int kChunkSizeL_, bool kSiluAct_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
|
273 |
+
struct Causal_conv1d_channellast_bwd_kernel_traits {
|
274 |
+
// The cache line is 128 bytes, and we try to read 16 bytes per thread.
|
275 |
+
// So we have 8 threads per "row", so 32 or 64 elements in the channel dimension.
|
276 |
+
// That leaves 4 columns per warp, and so 16 columns per block (assuming each block has 128
|
277 |
+
// threads). Each each load is 16 x 32|64 elements in the L x C dimensions.
|
278 |
+
using input_t = input_t_;
|
279 |
+
using weight_t = weight_t_;
|
280 |
+
static constexpr bool kSiluAct = kSiluAct_;
|
281 |
+
static constexpr int kNThreads = kNThreads_;
|
282 |
+
static_assert(kNThreads % 32 == 0);
|
283 |
+
static constexpr int kNWarps = kNThreads / 32;
|
284 |
+
static constexpr int kWidth = kWidth_;
|
285 |
+
static constexpr int kChunkSizeL = kChunkSizeL_;
|
286 |
+
static constexpr int kNBytes = sizeof(input_t);
|
287 |
+
static_assert(kNBytes == 2 || kNBytes == 4);
|
288 |
+
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
|
289 |
+
static constexpr int kNEltsPerRow = 128 / kNBytes;
|
290 |
+
static constexpr int kNThreadsPerRow = kNEltsPerRow / kNElts; // Always 8 for now
|
291 |
+
static_assert(kNThreadsPerRow * kNBytes * kNElts == 128);
|
292 |
+
static constexpr int kNColsPerWarp = 32 / kNThreadsPerRow; // Always 4 for now
|
293 |
+
static_assert(kNColsPerWarp * kNThreadsPerRow == 32);
|
294 |
+
static constexpr int kNColsPerLoad = kNColsPerWarp * kNWarps;
|
295 |
+
static constexpr int kNLoads = kChunkSizeL / kNColsPerLoad;
|
296 |
+
static_assert(kNLoads * kNColsPerLoad == kChunkSizeL);
|
297 |
+
static constexpr bool kIsVecLoad = kIsVecLoad_;
|
298 |
+
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
|
299 |
+
// using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
300 |
+
// using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
|
301 |
+
// static constexpr int kSmemSize = std::max({sizeof(typename BlockLoadT::TempStorage),
|
302 |
+
// sizeof(typename BlockStoreT::TempStorage)});
|
303 |
+
// static constexpr int kSmemSize = kChunkSizeL * kNEltsPerRow * kNBytes;
|
304 |
+
};
|
305 |
+
|
306 |
+
template<typename Ktraits>
|
307 |
+
__global__ __launch_bounds__(Ktraits::kNThreads)
|
308 |
+
void causal_conv1d_channellast_bwd_kernel(ConvParamsBwd params) {
|
309 |
+
constexpr int kWidth = Ktraits::kWidth;
|
310 |
+
constexpr int kNThreads = Ktraits::kNThreads;
|
311 |
+
constexpr bool kSiluAct = Ktraits::kSiluAct;
|
312 |
+
constexpr int kNElts = Ktraits::kNElts;
|
313 |
+
constexpr int kNWarp = Ktraits::kNWarps;
|
314 |
+
constexpr int kNThreadsPerC = Ktraits::kNThreadsPerRow;
|
315 |
+
constexpr int kLPerLoad = Ktraits::kNColsPerLoad;
|
316 |
+
constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
|
317 |
+
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
|
318 |
+
using input_t = typename Ktraits::input_t;
|
319 |
+
using vec_t = typename Ktraits::vec_t;
|
320 |
+
using weight_t = typename Ktraits::weight_t;
|
321 |
+
|
322 |
+
// Shared memory.
|
323 |
+
__shared__ input_t dout_smem[kChunkSizeL + kWidth - 1][kChunkSizeC + kNElts];
|
324 |
+
__shared__ input_t x_smem[kWidth - 1 + kChunkSizeL + kWidth - 1][kChunkSizeC + kNElts];
|
325 |
+
|
326 |
+
const int tid = threadIdx.x;
|
327 |
+
const int l_idx = tid / kNThreadsPerC;
|
328 |
+
const int c_idx = tid % kNThreadsPerC;
|
329 |
+
const int batch_id = blockIdx.x;
|
330 |
+
const int chunk_l_id = blockIdx.y;
|
331 |
+
const int chunk_c_id = blockIdx.z;
|
332 |
+
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
|
333 |
+
+ (chunk_l_id * kChunkSizeL + l_idx) * params.x_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
|
334 |
+
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr)
|
335 |
+
+ chunk_c_id * kChunkSizeC * params.weight_c_stride;
|
336 |
+
input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride
|
337 |
+
+ (chunk_l_id * kChunkSizeL + l_idx) * params.dout_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
|
338 |
+
input_t *dx = reinterpret_cast<input_t *>(params.dx_ptr) + batch_id * params.dx_batch_stride
|
339 |
+
+ (chunk_l_id * kChunkSizeL + l_idx) * params.dx_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
|
340 |
+
float *dweight = reinterpret_cast<float *>(params.dweight_ptr)
|
341 |
+
+ chunk_c_id * kChunkSizeC * params.dweight_c_stride;
|
342 |
+
|
343 |
+
#pragma unroll
|
344 |
+
for (int l = 0; l < Ktraits::kNLoads; ++l) {
|
345 |
+
input_t dout_vals_load[kNElts] = {0};
|
346 |
+
input_t x_vals_load[kNElts] = {0};
|
347 |
+
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
|
348 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
349 |
+
reinterpret_cast<vec_t *>(dout_vals_load)[0] = *reinterpret_cast<vec_t *>(dout + l * kLPerLoad * params.dout_l_stride);
|
350 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + l * kLPerLoad * params.x_l_stride);
|
351 |
+
}
|
352 |
+
reinterpret_cast<vec_t *>(dout_smem[l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(dout_vals_load)[0];
|
353 |
+
reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
|
354 |
+
}
|
355 |
+
// Load the elements from the previous chunk or next chunk that are needed for convolution.
|
356 |
+
if (l_idx < kWidth - 1) {
|
357 |
+
input_t dout_vals_load[kNElts] = {0};
|
358 |
+
input_t x_vals_load[kNElts] = {0};
|
359 |
+
if ((chunk_l_id + 1) * kChunkSizeL + l_idx < params.seqlen
|
360 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
361 |
+
reinterpret_cast<vec_t *>(dout_vals_load)[0] = *reinterpret_cast<vec_t *>(dout + kChunkSizeL * params.dout_l_stride);
|
362 |
+
}
|
363 |
+
if (chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) >= 0
|
364 |
+
&& chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < params.seqlen
|
365 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
366 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x - (kWidth - 1) * params.x_l_stride);
|
367 |
+
}
|
368 |
+
reinterpret_cast<vec_t *>(dout_smem[kChunkSizeL + l_idx])[c_idx] = reinterpret_cast<vec_t *>(dout_vals_load)[0];
|
369 |
+
reinterpret_cast<vec_t *>(x_smem[l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
|
370 |
+
}
|
371 |
+
// Need to load (kWdith - 1) extra x's on the right to recompute the (kChunkSizeL + kWidth - 1) outputs
|
372 |
+
if constexpr (kSiluAct) {
|
373 |
+
if (l_idx < kWidth - 1) {
|
374 |
+
input_t x_vals_load[kNElts] = {0};
|
375 |
+
if ((chunk_l_id + 1) * kChunkSizeL + l_idx < params.seqlen
|
376 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
377 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + kChunkSizeL * params.x_l_stride);
|
378 |
+
}
|
379 |
+
reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + kChunkSizeL + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
|
380 |
+
}
|
381 |
+
}
|
382 |
+
|
383 |
+
__syncthreads();
|
384 |
+
|
385 |
+
constexpr int kLPerThread = std::min(kChunkSizeL * kChunkSizeC / kNThreads, kChunkSizeL);
|
386 |
+
static_assert(kLPerThread * kNThreads == kChunkSizeL * kChunkSizeC);
|
387 |
+
constexpr int kNThreadsPerRow = kChunkSizeL / kLPerThread;
|
388 |
+
static_assert(kNThreadsPerRow * kLPerThread == kChunkSizeL);
|
389 |
+
// kChunkSizeL, kLPerThread, kNThreadsPerRow should be powers of 2 for simplicity
|
390 |
+
static_assert((kChunkSizeL & (kChunkSizeL - 1)) == 0);
|
391 |
+
static_assert((kLPerThread & (kLPerThread - 1)) == 0);
|
392 |
+
static_assert((kNThreadsPerRow & (kNThreadsPerRow - 1)) == 0);
|
393 |
+
static_assert(kNThreadsPerRow <= 32);
|
394 |
+
|
395 |
+
const int row_idx = tid / kNThreadsPerRow;
|
396 |
+
const int col_idx = tid % kNThreadsPerRow;
|
397 |
+
|
398 |
+
float bias_val = params.bias_ptr == nullptr || chunk_c_id * kChunkSizeC + row_idx >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[chunk_c_id * kChunkSizeC + row_idx]);
|
399 |
+
float weight_vals[kWidth] = {0};
|
400 |
+
if (chunk_c_id * kChunkSizeC + row_idx < params.dim) {
|
401 |
+
#pragma unroll
|
402 |
+
for (int w = 0; w < kWidth; ++w) {
|
403 |
+
weight_vals[w] = weight[row_idx * params.weight_c_stride + w * params.weight_width_stride];
|
404 |
+
}
|
405 |
+
}
|
406 |
+
float dout_vals[kLPerThread + kWidth - 1];
|
407 |
+
float x_vals[kWidth - 1 + kLPerThread + kWidth - 1];
|
408 |
+
#pragma unroll
|
409 |
+
for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) {
|
410 |
+
dout_vals[i] = float(dout_smem[col_idx * kLPerThread + i][row_idx]);
|
411 |
+
x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]);
|
412 |
+
}
|
413 |
+
|
414 |
+
if constexpr (kSiluAct) { // Recompute the output
|
415 |
+
#pragma unroll
|
416 |
+
for (int i = kWidth - 1 + kLPerThread; i < kWidth - 1 + kLPerThread + kWidth - 1; ++i) {
|
417 |
+
x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]);
|
418 |
+
}
|
419 |
+
#pragma unroll
|
420 |
+
for (int i = 0; i < kLPerThread + kWidth - 1; ++i) {
|
421 |
+
float out_val = bias_val;
|
422 |
+
#pragma unroll
|
423 |
+
for (int w = 0; w < kWidth; ++w) { out_val += weight_vals[w] * x_vals[i + w]; }
|
424 |
+
float out_val_sigmoid = 1.f / (1.f + expf(-out_val));
|
425 |
+
dout_vals[i] *= out_val_sigmoid * (1 + out_val * (1 - out_val_sigmoid));
|
426 |
+
}
|
427 |
+
}
|
428 |
+
|
429 |
+
float dweight_vals[kWidth] = {0};
|
430 |
+
SumOp<float> sum_op;
|
431 |
+
#pragma unroll
|
432 |
+
for (int w = 0; w < kWidth; ++w) {
|
433 |
+
#pragma unroll
|
434 |
+
for (int i = 0; i < kLPerThread; ++i) { dweight_vals[w] += x_vals[i + w] * dout_vals[i]; }
|
435 |
+
dweight_vals[w] = Allreduce<kNThreadsPerRow>::run(dweight_vals[w], sum_op);
|
436 |
+
if (col_idx == 0 && chunk_c_id * kChunkSizeC + row_idx < params.dim) {
|
437 |
+
atomicAdd(&reinterpret_cast<float *>(dweight)[row_idx * params.dweight_c_stride + w * params.dweight_width_stride], dweight_vals[w]);
|
438 |
+
}
|
439 |
+
}
|
440 |
+
|
441 |
+
if (params.bias_ptr != nullptr) {
|
442 |
+
float dbias_val = 0.f;
|
443 |
+
for (int i = 0; i < kLPerThread; ++i) { dbias_val += dout_vals[i]; }
|
444 |
+
dbias_val = Allreduce<kNThreadsPerRow>::run(dbias_val, sum_op);
|
445 |
+
if (col_idx == 0 && chunk_c_id * kChunkSizeC + row_idx < params.dim) {
|
446 |
+
atomicAdd(&reinterpret_cast<float *>(params.dbias_ptr)[chunk_c_id * kChunkSizeC + row_idx], dbias_val);
|
447 |
+
}
|
448 |
+
}
|
449 |
+
|
450 |
+
float dx_vals[kLPerThread] = {0};
|
451 |
+
#pragma unroll
|
452 |
+
for (int i = 0; i < kLPerThread; ++i) {
|
453 |
+
#pragma unroll
|
454 |
+
for (int w = 0; w < kWidth; ++w) { dx_vals[i] += weight_vals[kWidth - 1 - w] * dout_vals[i + w]; }
|
455 |
+
}
|
456 |
+
// Since kNThreadsPerRow is a power of 2 and <= 32, we only need syncwarp and not syncthreads.
|
457 |
+
__syncwarp();
|
458 |
+
#pragma unroll
|
459 |
+
for (int i = 0; i < kLPerThread; ++i) { x_smem[col_idx * kLPerThread + i][row_idx] = dx_vals[i]; }
|
460 |
+
__syncthreads();
|
461 |
+
|
462 |
+
#pragma unroll
|
463 |
+
for (int l = 0; l < Ktraits::kNLoads; ++l) {
|
464 |
+
input_t dx_vals_store[kNElts];
|
465 |
+
reinterpret_cast<vec_t *>(dx_vals_store)[0] = reinterpret_cast<vec_t *>(x_smem[l * kLPerLoad + l_idx])[c_idx];
|
466 |
+
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
|
467 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
468 |
+
*reinterpret_cast<vec_t *>(dx + l * kLPerLoad * params.dx_l_stride) = reinterpret_cast<vec_t *>(dx_vals_store)[0];
|
469 |
+
}
|
470 |
+
}
|
471 |
+
|
472 |
+
}
|
473 |
+
|
474 |
+
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
|
475 |
+
void causal_conv1d_channellast_bwd_launch(ConvParamsBwd ¶ms, cudaStream_t stream) {
|
476 |
+
BOOL_SWITCH(params.silu_activation, kSiluAct, [&] {
|
477 |
+
using Ktraits = Causal_conv1d_channellast_bwd_kernel_traits<kNThreads, kWidth, 64, kSiluAct, true, input_t, weight_t>;
|
478 |
+
// constexpr int kSmemSize = Ktraits::kSmemSize;
|
479 |
+
constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
|
480 |
+
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
|
481 |
+
const int n_chunks_L = (params.seqlen + kChunkSizeL - 1) / kChunkSizeL;
|
482 |
+
const int n_chunks_C = (params.dim + kChunkSizeC - 1) / kChunkSizeC;
|
483 |
+
dim3 grid(params.batch, n_chunks_L, n_chunks_C);
|
484 |
+
dim3 block(Ktraits::kNThreads);
|
485 |
+
auto kernel = &causal_conv1d_channellast_bwd_kernel<Ktraits>;
|
486 |
+
// if (kSmemSize >= 48 * 1024) {
|
487 |
+
// C10_CUDA_CHECK(cudaFuncSetAttribute(
|
488 |
+
// kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
|
489 |
+
// }
|
490 |
+
// kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
|
491 |
+
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
|
492 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
493 |
+
});
|
494 |
+
}
|
495 |
+
|
496 |
+
template<typename input_t, typename weight_t>
|
497 |
+
void causal_conv1d_channellast_bwd_cuda(ConvParamsBwd ¶ms, cudaStream_t stream) {
|
498 |
+
if (params.width == 2) {
|
499 |
+
causal_conv1d_channellast_bwd_launch<128, 2, input_t, weight_t>(params, stream);
|
500 |
+
} else if (params.width == 3) {
|
501 |
+
causal_conv1d_channellast_bwd_launch<128, 3, input_t, weight_t>(params, stream);
|
502 |
+
} else if (params.width == 4) {
|
503 |
+
causal_conv1d_channellast_bwd_launch<128, 4, input_t, weight_t>(params, stream);
|
504 |
+
}
|
505 |
+
}
|
506 |
+
|
507 |
+
template void causal_conv1d_bwd_cuda<float, float>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
508 |
+
template void causal_conv1d_bwd_cuda<at::Half, float>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
509 |
+
template void causal_conv1d_bwd_cuda<at::BFloat16, float>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
510 |
+
template void causal_conv1d_bwd_cuda<float, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
511 |
+
template void causal_conv1d_bwd_cuda<at::Half, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
512 |
+
template void causal_conv1d_bwd_cuda<at::BFloat16, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
513 |
+
template void causal_conv1d_bwd_cuda<float, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
514 |
+
template void causal_conv1d_bwd_cuda<at::Half, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
515 |
+
template void causal_conv1d_bwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
516 |
+
|
517 |
+
template void causal_conv1d_channellast_bwd_cuda<float, float>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
518 |
+
template void causal_conv1d_channellast_bwd_cuda<at::Half, float>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
519 |
+
template void causal_conv1d_channellast_bwd_cuda<at::BFloat16, float>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
520 |
+
template void causal_conv1d_channellast_bwd_cuda<float, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
521 |
+
template void causal_conv1d_channellast_bwd_cuda<at::Half, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
522 |
+
template void causal_conv1d_channellast_bwd_cuda<at::BFloat16, at::Half>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
523 |
+
template void causal_conv1d_channellast_bwd_cuda<float, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
524 |
+
template void causal_conv1d_channellast_bwd_cuda<at::Half, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
525 |
+
template void causal_conv1d_channellast_bwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBwd ¶ms, cudaStream_t stream);
|
causal-conv1d/csrc/causal_conv1d_common.h
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
#include <cuda_bf16.h>
|
8 |
+
#include <cuda_fp16.h>
|
9 |
+
|
10 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
11 |
+
|
12 |
+
template<int BYTES> struct BytesToType {};
|
13 |
+
|
14 |
+
template<> struct BytesToType<16> {
|
15 |
+
using Type = uint4;
|
16 |
+
static_assert(sizeof(Type) == 16);
|
17 |
+
};
|
18 |
+
|
19 |
+
template<> struct BytesToType<8> {
|
20 |
+
using Type = uint64_t;
|
21 |
+
static_assert(sizeof(Type) == 8);
|
22 |
+
};
|
23 |
+
|
24 |
+
template<> struct BytesToType<4> {
|
25 |
+
using Type = uint32_t;
|
26 |
+
static_assert(sizeof(Type) == 4);
|
27 |
+
};
|
28 |
+
|
29 |
+
template<> struct BytesToType<2> {
|
30 |
+
using Type = uint16_t;
|
31 |
+
static_assert(sizeof(Type) == 2);
|
32 |
+
};
|
33 |
+
|
34 |
+
template<> struct BytesToType<1> {
|
35 |
+
using Type = uint8_t;
|
36 |
+
static_assert(sizeof(Type) == 1);
|
37 |
+
};
|
38 |
+
|
39 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
40 |
+
|
41 |
+
template<typename T>
|
42 |
+
struct SumOp {
|
43 |
+
__device__ inline T operator()(T const & x, T const & y) { return x + y; }
|
44 |
+
};
|
45 |
+
|
46 |
+
template<int THREADS>
|
47 |
+
struct Allreduce {
|
48 |
+
static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
|
49 |
+
template<typename T, typename Operator>
|
50 |
+
static __device__ inline T run(T x, Operator &op) {
|
51 |
+
constexpr int OFFSET = THREADS / 2;
|
52 |
+
x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
|
53 |
+
return Allreduce<OFFSET>::run(x, op);
|
54 |
+
}
|
55 |
+
};
|
56 |
+
|
57 |
+
template<>
|
58 |
+
struct Allreduce<2> {
|
59 |
+
template<typename T, typename Operator>
|
60 |
+
static __device__ inline T run(T x, Operator &op) {
|
61 |
+
x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
|
62 |
+
return x;
|
63 |
+
}
|
64 |
+
};
|
causal-conv1d/csrc/causal_conv1d_fwd.cu
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#include <c10/util/BFloat16.h>
|
6 |
+
#include <c10/util/Half.h>
|
7 |
+
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
|
8 |
+
|
9 |
+
#include <cub/block/block_load.cuh>
|
10 |
+
#include <cub/block/block_store.cuh>
|
11 |
+
|
12 |
+
#include "causal_conv1d.h"
|
13 |
+
#include "causal_conv1d_common.h"
|
14 |
+
#include "static_switch.h"
|
15 |
+
|
16 |
+
template<int kNThreads_, int kWidth_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
|
17 |
+
struct Causal_conv1d_fwd_kernel_traits {
|
18 |
+
using input_t = input_t_;
|
19 |
+
using weight_t = weight_t_;
|
20 |
+
static constexpr int kNThreads = kNThreads_;
|
21 |
+
static constexpr int kWidth = kWidth_;
|
22 |
+
static constexpr int kNBytes = sizeof(input_t);
|
23 |
+
static_assert(kNBytes == 2 || kNBytes == 4);
|
24 |
+
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
|
25 |
+
static_assert(kWidth <= kNElts);
|
26 |
+
static constexpr bool kIsVecLoad = kIsVecLoad_;
|
27 |
+
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
|
28 |
+
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
29 |
+
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>;
|
30 |
+
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>;
|
31 |
+
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>;
|
32 |
+
static constexpr int kSmemIOSize = kIsVecLoad
|
33 |
+
? 0
|
34 |
+
: std::max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)});
|
35 |
+
static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts;
|
36 |
+
static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize;
|
37 |
+
};
|
38 |
+
|
39 |
+
template<typename Ktraits>
|
40 |
+
__global__ __launch_bounds__(Ktraits::kNThreads)
|
41 |
+
void causal_conv1d_fwd_kernel(ConvParamsBase params) {
|
42 |
+
constexpr int kWidth = Ktraits::kWidth;
|
43 |
+
constexpr int kNThreads = Ktraits::kNThreads;
|
44 |
+
constexpr int kNElts = Ktraits::kNElts;
|
45 |
+
constexpr bool kIsVecLoad = Ktraits::kIsVecLoad;
|
46 |
+
using input_t = typename Ktraits::input_t;
|
47 |
+
using vec_t = typename Ktraits::vec_t;
|
48 |
+
using weight_t = typename Ktraits::weight_t;
|
49 |
+
|
50 |
+
// Shared memory.
|
51 |
+
extern __shared__ char smem_[];
|
52 |
+
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
|
53 |
+
auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_);
|
54 |
+
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
|
55 |
+
auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_);
|
56 |
+
vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize);
|
57 |
+
|
58 |
+
const int tidx = threadIdx.x;
|
59 |
+
const int batch_id = blockIdx.x;
|
60 |
+
const int channel_id = blockIdx.y;
|
61 |
+
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
|
62 |
+
+ channel_id * params.x_c_stride;
|
63 |
+
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
|
64 |
+
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
|
65 |
+
+ channel_id * params.out_c_stride;
|
66 |
+
float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
|
67 |
+
|
68 |
+
// Thread 0 will load the last elements of the previous chunk, so we initialize those to 0.
|
69 |
+
if (tidx == 0) {
|
70 |
+
input_t zeros[kNElts] = {0};
|
71 |
+
smem_exchange[kNThreads - 1] = reinterpret_cast<vec_t *>(zeros)[0];
|
72 |
+
}
|
73 |
+
|
74 |
+
float weight_vals[kWidth];
|
75 |
+
#pragma unroll
|
76 |
+
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
|
77 |
+
|
78 |
+
constexpr int kChunkSize = kNThreads * kNElts;
|
79 |
+
const int n_chunks = (params.seqlen + kChunkSize - 1) / kChunkSize;
|
80 |
+
for (int chunk = 0; chunk < n_chunks; ++chunk) {
|
81 |
+
input_t x_vals_load[2 * kNElts] = {0};
|
82 |
+
if constexpr(kIsVecLoad) {
|
83 |
+
Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (params.seqlen - chunk * kChunkSize) / kNElts);
|
84 |
+
} else {
|
85 |
+
__syncthreads();
|
86 |
+
Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), params.seqlen - chunk * kChunkSize);
|
87 |
+
}
|
88 |
+
x += kChunkSize;
|
89 |
+
__syncthreads();
|
90 |
+
// Thread kNThreads - 1 don't write yet, so that thread 0 can read
|
91 |
+
// the last elements of the previous chunk.
|
92 |
+
if (tidx < kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
|
93 |
+
__syncthreads();
|
94 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[tidx > 0 ? tidx - 1 : kNThreads - 1];
|
95 |
+
__syncthreads();
|
96 |
+
// Now thread kNThreads - 1 can write the last elements of the current chunk.
|
97 |
+
if (tidx == kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
|
98 |
+
|
99 |
+
float x_vals[2 * kNElts];
|
100 |
+
#pragma unroll
|
101 |
+
for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); }
|
102 |
+
|
103 |
+
float out_vals[kNElts];
|
104 |
+
#pragma unroll
|
105 |
+
for (int i = 0; i < kNElts; ++i) {
|
106 |
+
out_vals[i] = bias_val;
|
107 |
+
#pragma unroll
|
108 |
+
for (int w = 0; w < kWidth; ++w) {
|
109 |
+
out_vals[i] += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)];
|
110 |
+
}
|
111 |
+
}
|
112 |
+
|
113 |
+
if (params.silu_activation) {
|
114 |
+
#pragma unroll
|
115 |
+
for (int i = 0; i < kNElts; ++i) {
|
116 |
+
out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i]));
|
117 |
+
}
|
118 |
+
}
|
119 |
+
|
120 |
+
input_t out_vals_store[kNElts];
|
121 |
+
#pragma unroll
|
122 |
+
for (int i = 0; i < kNElts; ++i) { out_vals_store[i] = out_vals[i]; }
|
123 |
+
if constexpr(kIsVecLoad) {
|
124 |
+
Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(out), reinterpret_cast<vec_t (&)[1]>(out_vals_store), (params.seqlen - chunk * kChunkSize) / kNElts);
|
125 |
+
} else {
|
126 |
+
Ktraits::BlockStoreT(smem_store).Store(out, out_vals_store, params.seqlen - chunk * kChunkSize);
|
127 |
+
}
|
128 |
+
out += kChunkSize;
|
129 |
+
}
|
130 |
+
}
|
131 |
+
|
132 |
+
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
|
133 |
+
void causal_conv1d_fwd_launch(ConvParamsBase ¶ms, cudaStream_t stream) {
|
134 |
+
static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8;
|
135 |
+
BOOL_SWITCH(params.seqlen % kNElts == 0, kIsVecLoad, [&] {
|
136 |
+
using Ktraits = Causal_conv1d_fwd_kernel_traits<kNThreads, kWidth, kIsVecLoad, input_t, weight_t>;
|
137 |
+
constexpr int kSmemSize = Ktraits::kSmemSize;
|
138 |
+
dim3 grid(params.batch, params.dim);
|
139 |
+
auto kernel = &causal_conv1d_fwd_kernel<Ktraits>;
|
140 |
+
if (kSmemSize >= 48 * 1024) {
|
141 |
+
C10_CUDA_CHECK(cudaFuncSetAttribute(
|
142 |
+
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
|
143 |
+
}
|
144 |
+
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
|
145 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
146 |
+
});
|
147 |
+
}
|
148 |
+
|
149 |
+
template<typename input_t, typename weight_t>
|
150 |
+
void causal_conv1d_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream) {
|
151 |
+
if (params.width == 2) {
|
152 |
+
causal_conv1d_fwd_launch<128, 2, input_t, weight_t>(params, stream);
|
153 |
+
} else if (params.width == 3) {
|
154 |
+
causal_conv1d_fwd_launch<128, 3, input_t, weight_t>(params, stream);
|
155 |
+
} else if (params.width == 4) {
|
156 |
+
causal_conv1d_fwd_launch<128, 4, input_t, weight_t>(params, stream);
|
157 |
+
}
|
158 |
+
}
|
159 |
+
|
160 |
+
template<int kNThreads_, int kWidth_, int kChunkSizeL_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
|
161 |
+
struct Causal_conv1d_channellast_fwd_kernel_traits {
|
162 |
+
// The cache line is 128 bytes, and we try to read 16 bytes per thread.
|
163 |
+
// So we have 8 threads per "row", so 32 or 64 elements in the channel dimension.
|
164 |
+
// That leaves 4 columns per warp, and so 16 columns per block (assuming each block has 128
|
165 |
+
// threads). Each each load is 16 x 32|64 elements in the L x C dimensions.
|
166 |
+
using input_t = input_t_;
|
167 |
+
using weight_t = weight_t_;
|
168 |
+
static constexpr int kNThreads = kNThreads_;
|
169 |
+
static_assert(kNThreads % 32 == 0);
|
170 |
+
static constexpr int kNWarps = kNThreads / 32;
|
171 |
+
static constexpr int kWidth = kWidth_;
|
172 |
+
static constexpr int kChunkSizeL = kChunkSizeL_;
|
173 |
+
static constexpr int kNBytes = sizeof(input_t);
|
174 |
+
static_assert(kNBytes == 2 || kNBytes == 4);
|
175 |
+
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
|
176 |
+
static constexpr int kNEltsPerRow = 128 / kNBytes;
|
177 |
+
static constexpr int kNThreadsPerRow = kNEltsPerRow / kNElts; // Always 8 for now
|
178 |
+
static_assert(kNThreadsPerRow * kNBytes * kNElts == 128);
|
179 |
+
static constexpr int kNColsPerWarp = 32 / kNThreadsPerRow; // Always 4 for now
|
180 |
+
static_assert(kNColsPerWarp * kNThreadsPerRow == 32);
|
181 |
+
static constexpr int kNColsPerLoad = kNColsPerWarp * kNWarps;
|
182 |
+
static constexpr int kNLoads = kChunkSizeL / kNColsPerLoad;
|
183 |
+
static_assert(kNLoads * kNColsPerLoad == kChunkSizeL);
|
184 |
+
static constexpr bool kIsVecLoad = kIsVecLoad_;
|
185 |
+
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
|
186 |
+
// using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
187 |
+
// using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
|
188 |
+
// static constexpr int kSmemSize = std::max({sizeof(typename BlockLoadT::TempStorage),
|
189 |
+
// sizeof(typename BlockStoreT::TempStorage)});
|
190 |
+
// static constexpr int kSmemSize = kChunkSizeL * kNEltsPerRow * kNBytes;
|
191 |
+
};
|
192 |
+
|
193 |
+
template<typename Ktraits>
|
194 |
+
__global__ __launch_bounds__(Ktraits::kNThreads)
|
195 |
+
void causal_conv1d_channellast_fwd_kernel(ConvParamsBase params) {
|
196 |
+
constexpr int kWidth = Ktraits::kWidth;
|
197 |
+
constexpr int kNThreads = Ktraits::kNThreads;
|
198 |
+
constexpr int kNElts = Ktraits::kNElts;
|
199 |
+
constexpr int kNWarp = Ktraits::kNWarps;
|
200 |
+
constexpr int kNThreadsPerC = Ktraits::kNThreadsPerRow;
|
201 |
+
constexpr int kLPerLoad = Ktraits::kNColsPerLoad;
|
202 |
+
constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
|
203 |
+
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
|
204 |
+
using input_t = typename Ktraits::input_t;
|
205 |
+
using vec_t = typename Ktraits::vec_t;
|
206 |
+
using weight_t = typename Ktraits::weight_t;
|
207 |
+
|
208 |
+
// Shared memory.
|
209 |
+
__shared__ input_t x_smem[kWidth - 1 + kChunkSizeL][kChunkSizeC + kNElts];
|
210 |
+
|
211 |
+
const int tid = threadIdx.x;
|
212 |
+
const int l_idx = tid / kNThreadsPerC;
|
213 |
+
const int c_idx = tid % kNThreadsPerC;
|
214 |
+
const int batch_id = blockIdx.x;
|
215 |
+
const int chunk_l_id = blockIdx.y;
|
216 |
+
const int chunk_c_id = blockIdx.z;
|
217 |
+
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
|
218 |
+
+ (chunk_l_id * kChunkSizeL + l_idx) * params.x_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
|
219 |
+
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr)
|
220 |
+
+ chunk_c_id * kChunkSizeC * params.weight_c_stride;
|
221 |
+
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
|
222 |
+
+ (chunk_l_id * kChunkSizeL + l_idx) * params.out_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
|
223 |
+
|
224 |
+
#pragma unroll
|
225 |
+
for (int l = 0; l < Ktraits::kNLoads; ++l) {
|
226 |
+
input_t x_vals_load[kNElts] = {0};
|
227 |
+
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
|
228 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
229 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + l * kLPerLoad * params.x_l_stride);
|
230 |
+
}
|
231 |
+
reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
|
232 |
+
}
|
233 |
+
// Load the elements from the previous chunk that are needed for convolution.
|
234 |
+
if (l_idx < kWidth - 1) {
|
235 |
+
input_t x_vals_load[kNElts] = {0};
|
236 |
+
if (chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) >= 0
|
237 |
+
&& chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < params.seqlen
|
238 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
239 |
+
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x - (kWidth - 1) * params.x_l_stride);
|
240 |
+
}
|
241 |
+
reinterpret_cast<vec_t *>(x_smem[l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
|
242 |
+
}
|
243 |
+
|
244 |
+
__syncthreads();
|
245 |
+
|
246 |
+
constexpr int kLPerThread = std::min(kChunkSizeL * kChunkSizeC / kNThreads, kChunkSizeL);
|
247 |
+
static_assert(kLPerThread * kNThreads == kChunkSizeL * kChunkSizeC);
|
248 |
+
constexpr int kNThreadsPerRow = kChunkSizeL / kLPerThread;
|
249 |
+
static_assert(kNThreadsPerRow * kLPerThread == kChunkSizeL);
|
250 |
+
// kChunkSizeL, kLPerThread, kNThreadsPerRow should be powers of 2 for simplicity
|
251 |
+
static_assert((kChunkSizeL & (kChunkSizeL - 1)) == 0);
|
252 |
+
static_assert((kLPerThread & (kLPerThread - 1)) == 0);
|
253 |
+
static_assert((kNThreadsPerRow & (kNThreadsPerRow - 1)) == 0);
|
254 |
+
static_assert(kNThreadsPerRow <= 32);
|
255 |
+
|
256 |
+
const int row_idx = tid / kNThreadsPerRow;
|
257 |
+
const int col_idx = tid % kNThreadsPerRow;
|
258 |
+
|
259 |
+
float bias_val = params.bias_ptr == nullptr || chunk_c_id * kChunkSizeC + row_idx >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[chunk_c_id * kChunkSizeC + row_idx]);
|
260 |
+
float weight_vals[kWidth] = {0};
|
261 |
+
if (chunk_c_id + kChunkSizeC + row_idx < params.dim) {
|
262 |
+
#pragma unroll
|
263 |
+
for (int w = 0; w < kWidth; ++w) {
|
264 |
+
weight_vals[w] = weight[row_idx * params.weight_c_stride + w * params.weight_width_stride];
|
265 |
+
}
|
266 |
+
}
|
267 |
+
float x_vals[kWidth - 1 + kLPerThread];
|
268 |
+
#pragma unroll
|
269 |
+
for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) {
|
270 |
+
x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]);
|
271 |
+
}
|
272 |
+
|
273 |
+
float out_vals[kLPerThread];
|
274 |
+
#pragma unroll
|
275 |
+
for (int i = 0; i < kLPerThread; ++i) {
|
276 |
+
out_vals[i] = bias_val;
|
277 |
+
#pragma unroll
|
278 |
+
for (int w = 0; w < kWidth; ++w) { out_vals[i] += weight_vals[w] * x_vals[i + w]; }
|
279 |
+
if (params.silu_activation) {out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i])); }
|
280 |
+
}
|
281 |
+
|
282 |
+
// Since kNThreadsPerRow is a power of 2 and <= 32, we only need syncwarp and not syncthreads.
|
283 |
+
__syncwarp();
|
284 |
+
#pragma unroll
|
285 |
+
for (int i = 0; i < kLPerThread; ++i) { x_smem[col_idx * kLPerThread + i][row_idx] = out_vals[i]; }
|
286 |
+
__syncthreads();
|
287 |
+
|
288 |
+
#pragma unroll
|
289 |
+
for (int l = 0; l < Ktraits::kNLoads; ++l) {
|
290 |
+
input_t out_vals_store[kNElts];
|
291 |
+
reinterpret_cast<vec_t *>(out_vals_store)[0] = reinterpret_cast<vec_t *>(x_smem[l * kLPerLoad + l_idx])[c_idx];
|
292 |
+
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
|
293 |
+
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
|
294 |
+
*reinterpret_cast<vec_t *>(out + l * kLPerLoad * params.out_l_stride) = reinterpret_cast<vec_t *>(out_vals_store)[0];
|
295 |
+
}
|
296 |
+
}
|
297 |
+
|
298 |
+
}
|
299 |
+
|
300 |
+
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
|
301 |
+
void causal_conv1d_channellast_fwd_launch(ConvParamsBase ¶ms, cudaStream_t stream) {
|
302 |
+
using Ktraits = Causal_conv1d_channellast_fwd_kernel_traits<kNThreads, kWidth, 64, true, input_t, weight_t>;
|
303 |
+
// constexpr int kSmemSize = Ktraits::kSmemSize;
|
304 |
+
constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
|
305 |
+
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
|
306 |
+
const int n_chunks_L = (params.seqlen + kChunkSizeL - 1) / kChunkSizeL;
|
307 |
+
const int n_chunks_C = (params.dim + kChunkSizeC - 1) / kChunkSizeC;
|
308 |
+
// printf("n_chunks_L: %d, n_chunks_C: %d\n", n_chunks_L, n_chunks_C);
|
309 |
+
dim3 grid(params.batch, n_chunks_L, n_chunks_C);
|
310 |
+
dim3 block(Ktraits::kNThreads);
|
311 |
+
auto kernel = &causal_conv1d_channellast_fwd_kernel<Ktraits>;
|
312 |
+
// if (kSmemSize >= 48 * 1024) {
|
313 |
+
// C10_CUDA_CHECK(cudaFuncSetAttribute(
|
314 |
+
// kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
|
315 |
+
// }
|
316 |
+
// kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
|
317 |
+
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
|
318 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
319 |
+
}
|
320 |
+
|
321 |
+
template<typename input_t, typename weight_t>
|
322 |
+
void causal_conv1d_channellast_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream) {
|
323 |
+
if (params.width == 2) {
|
324 |
+
causal_conv1d_channellast_fwd_launch<128, 2, input_t, weight_t>(params, stream);
|
325 |
+
} else if (params.width == 3) {
|
326 |
+
causal_conv1d_channellast_fwd_launch<128, 3, input_t, weight_t>(params, stream);
|
327 |
+
} else if (params.width == 4) {
|
328 |
+
causal_conv1d_channellast_fwd_launch<128, 4, input_t, weight_t>(params, stream);
|
329 |
+
}
|
330 |
+
}
|
331 |
+
|
332 |
+
template void causal_conv1d_fwd_cuda<float, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
333 |
+
template void causal_conv1d_fwd_cuda<at::Half, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
334 |
+
template void causal_conv1d_fwd_cuda<at::BFloat16, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
335 |
+
template void causal_conv1d_fwd_cuda<float, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
336 |
+
template void causal_conv1d_fwd_cuda<at::Half, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
337 |
+
template void causal_conv1d_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
338 |
+
template void causal_conv1d_fwd_cuda<float, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
339 |
+
template void causal_conv1d_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
340 |
+
template void causal_conv1d_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
341 |
+
|
342 |
+
template void causal_conv1d_channellast_fwd_cuda<float, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
343 |
+
template void causal_conv1d_channellast_fwd_cuda<at::Half, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
344 |
+
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
345 |
+
template void causal_conv1d_channellast_fwd_cuda<float, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
346 |
+
template void causal_conv1d_channellast_fwd_cuda<at::Half, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
347 |
+
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
348 |
+
template void causal_conv1d_channellast_fwd_cuda<float, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
349 |
+
template void causal_conv1d_channellast_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
350 |
+
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
causal-conv1d/csrc/causal_conv1d_update.cu
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#include <c10/util/BFloat16.h>
|
6 |
+
#include <c10/util/Half.h>
|
7 |
+
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
|
8 |
+
|
9 |
+
#include <cub/block/block_load.cuh>
|
10 |
+
#include <cub/block/block_store.cuh>
|
11 |
+
|
12 |
+
#include "causal_conv1d.h"
|
13 |
+
#include "causal_conv1d_common.h"
|
14 |
+
#include "static_switch.h"
|
15 |
+
|
16 |
+
template<int kNThreads_, int kWidth_, typename input_t_, typename weight_t_>
|
17 |
+
struct Causal_conv1d_update_kernel_traits {
|
18 |
+
using input_t = input_t_;
|
19 |
+
using weight_t = weight_t_;
|
20 |
+
static constexpr int kNThreads = kNThreads_;
|
21 |
+
static constexpr int kWidth = kWidth_;
|
22 |
+
static constexpr int kNBytes = sizeof(input_t);
|
23 |
+
static_assert(kNBytes == 2 || kNBytes == 4);
|
24 |
+
};
|
25 |
+
|
26 |
+
template<typename Ktraits>
|
27 |
+
__global__ __launch_bounds__(Ktraits::kNThreads)
|
28 |
+
void causal_conv1d_update_kernel(ConvParamsBase params) {
|
29 |
+
constexpr int kWidth = Ktraits::kWidth;
|
30 |
+
constexpr int kNThreads = Ktraits::kNThreads;
|
31 |
+
using input_t = typename Ktraits::input_t;
|
32 |
+
using weight_t = typename Ktraits::weight_t;
|
33 |
+
|
34 |
+
const int tidx = threadIdx.x;
|
35 |
+
const int batch_id = blockIdx.x;
|
36 |
+
const int channel_id = blockIdx.y * kNThreads + tidx;
|
37 |
+
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
|
38 |
+
+ channel_id * params.x_c_stride;
|
39 |
+
input_t *conv_state = reinterpret_cast<input_t *>(params.conv_state_ptr) + batch_id * params.conv_state_batch_stride
|
40 |
+
+ channel_id * params.conv_state_c_stride;
|
41 |
+
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
|
42 |
+
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
|
43 |
+
+ channel_id * params.out_c_stride;
|
44 |
+
float bias_val = params.bias_ptr == nullptr || channel_id >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
|
45 |
+
|
46 |
+
float weight_vals[kWidth] = {0};
|
47 |
+
if (channel_id < params.dim) {
|
48 |
+
#pragma unroll
|
49 |
+
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
|
50 |
+
}
|
51 |
+
|
52 |
+
float x_vals[kWidth] = {0};
|
53 |
+
if (channel_id < params.dim) {
|
54 |
+
#pragma unroll
|
55 |
+
for (int i = 0; i < kWidth - 1; ++i) { x_vals[i] = float(conv_state[(i + 1) * params.conv_state_l_stride]); }
|
56 |
+
x_vals[kWidth - 1] = float(x[0]);
|
57 |
+
#pragma unroll
|
58 |
+
for (int i = 0; i < kWidth; ++i) { conv_state[i * params.conv_state_l_stride] = input_t(x_vals[i]); }
|
59 |
+
}
|
60 |
+
|
61 |
+
float out_val = bias_val;
|
62 |
+
#pragma unroll
|
63 |
+
for (int i = 0; i < kWidth; ++i) { out_val += weight_vals[i] * x_vals[i]; }
|
64 |
+
if (params.silu_activation) { out_val = out_val / (1 + expf(-out_val)); }
|
65 |
+
if (channel_id < params.dim) { out[0] = input_t(out_val); }
|
66 |
+
}
|
67 |
+
|
68 |
+
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
|
69 |
+
void causal_conv1d_update_launch(ConvParamsBase ¶ms, cudaStream_t stream) {
|
70 |
+
using Ktraits = Causal_conv1d_update_kernel_traits<kNThreads, kWidth, input_t, weight_t>;
|
71 |
+
dim3 grid(params.batch, (params.dim + kNThreads - 1) / kNThreads);
|
72 |
+
auto kernel = &causal_conv1d_update_kernel<Ktraits>;
|
73 |
+
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
|
74 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
75 |
+
}
|
76 |
+
|
77 |
+
template<typename input_t, typename weight_t>
|
78 |
+
void causal_conv1d_update_cuda(ConvParamsBase ¶ms, cudaStream_t stream) {
|
79 |
+
if (params.width == 2) {
|
80 |
+
causal_conv1d_update_launch<64, 2, input_t, weight_t>(params, stream);
|
81 |
+
} else if (params.width == 3) {
|
82 |
+
causal_conv1d_update_launch<64, 3, input_t, weight_t>(params, stream);
|
83 |
+
} else if (params.width == 4) {
|
84 |
+
causal_conv1d_update_launch<64, 4, input_t, weight_t>(params, stream);
|
85 |
+
}
|
86 |
+
}
|
87 |
+
|
88 |
+
template void causal_conv1d_update_cuda<float, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
89 |
+
template void causal_conv1d_update_cuda<at::Half, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
90 |
+
template void causal_conv1d_update_cuda<at::BFloat16, float>(ConvParamsBase ¶ms, cudaStream_t stream);
|
91 |
+
template void causal_conv1d_update_cuda<float, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
92 |
+
template void causal_conv1d_update_cuda<at::Half, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
93 |
+
template void causal_conv1d_update_cuda<at::BFloat16, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
|
94 |
+
template void causal_conv1d_update_cuda<float, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
95 |
+
template void causal_conv1d_update_cuda<at::Half, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
96 |
+
template void causal_conv1d_update_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
|
causal-conv1d/csrc/static_switch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Inspired by https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
|
2 |
+
// and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
|
3 |
+
|
4 |
+
#pragma once
|
5 |
+
|
6 |
+
/// @param COND - a boolean expression to switch by
|
7 |
+
/// @param CONST_NAME - a name given for the constexpr bool variable.
|
8 |
+
/// @param ... - code to execute for true and false
|
9 |
+
///
|
10 |
+
/// Usage:
|
11 |
+
/// ```
|
12 |
+
/// BOOL_SWITCH(flag, BoolConst, [&] {
|
13 |
+
/// some_function<BoolConst>(...);
|
14 |
+
/// });
|
15 |
+
/// ```
|
16 |
+
#define BOOL_SWITCH(COND, CONST_NAME, ...) \
|
17 |
+
[&] { \
|
18 |
+
if (COND) { \
|
19 |
+
static constexpr bool CONST_NAME = true; \
|
20 |
+
return __VA_ARGS__(); \
|
21 |
+
} else { \
|
22 |
+
static constexpr bool CONST_NAME = false; \
|
23 |
+
return __VA_ARGS__(); \
|
24 |
+
} \
|
25 |
+
}()
|
causal-conv1d/setup.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Tri Dao.
|
2 |
+
import sys
|
3 |
+
import warnings
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import ast
|
7 |
+
from pathlib import Path
|
8 |
+
from packaging.version import parse, Version
|
9 |
+
import platform
|
10 |
+
|
11 |
+
from setuptools import setup, find_packages
|
12 |
+
import subprocess
|
13 |
+
|
14 |
+
import urllib.request
|
15 |
+
import urllib.error
|
16 |
+
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch.utils.cpp_extension import (
|
20 |
+
BuildExtension,
|
21 |
+
CppExtension,
|
22 |
+
CUDAExtension,
|
23 |
+
CUDA_HOME,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
with open("README.md", "r", encoding="utf-8") as fh:
|
28 |
+
long_description = fh.read()
|
29 |
+
|
30 |
+
|
31 |
+
# ninja build does not work unless include_dirs are abs path
|
32 |
+
this_dir = os.path.dirname(os.path.abspath(__file__))
|
33 |
+
|
34 |
+
PACKAGE_NAME = "causal_conv1d"
|
35 |
+
|
36 |
+
BASE_WHEEL_URL = "https://github.com/Dao-AILab/causal-conv1d/releases/download/{tag_name}/{wheel_name}"
|
37 |
+
|
38 |
+
# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
|
39 |
+
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
|
40 |
+
FORCE_BUILD = os.getenv("CAUSAL_CONV1D_FORCE_BUILD", "FALSE") == "TRUE"
|
41 |
+
SKIP_CUDA_BUILD = os.getenv("CAUSAL_CONV1D_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
|
42 |
+
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
|
43 |
+
FORCE_CXX11_ABI = os.getenv("CAUSAL_CONV1D_FORCE_CXX11_ABI", "FALSE") == "TRUE"
|
44 |
+
|
45 |
+
|
46 |
+
def get_platform():
|
47 |
+
"""
|
48 |
+
Returns the platform name as used in wheel filenames.
|
49 |
+
"""
|
50 |
+
if sys.platform.startswith("linux"):
|
51 |
+
return "linux_x86_64"
|
52 |
+
elif sys.platform == "darwin":
|
53 |
+
mac_version = ".".join(platform.mac_ver()[0].split(".")[:2])
|
54 |
+
return f"macosx_{mac_version}_x86_64"
|
55 |
+
elif sys.platform == "win32":
|
56 |
+
return "win_amd64"
|
57 |
+
else:
|
58 |
+
raise ValueError("Unsupported platform: {}".format(sys.platform))
|
59 |
+
|
60 |
+
|
61 |
+
def get_cuda_bare_metal_version(cuda_dir):
|
62 |
+
raw_output = subprocess.check_output(
|
63 |
+
[cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
|
64 |
+
)
|
65 |
+
output = raw_output.split()
|
66 |
+
release_idx = output.index("release") + 1
|
67 |
+
bare_metal_version = parse(output[release_idx].split(",")[0])
|
68 |
+
|
69 |
+
return raw_output, bare_metal_version
|
70 |
+
|
71 |
+
|
72 |
+
def check_if_cuda_home_none(global_option: str) -> None:
|
73 |
+
if CUDA_HOME is not None:
|
74 |
+
return
|
75 |
+
# warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary
|
76 |
+
# in that case.
|
77 |
+
warnings.warn(
|
78 |
+
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
|
79 |
+
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
|
80 |
+
"only images whose names contain 'devel' will provide nvcc."
|
81 |
+
)
|
82 |
+
|
83 |
+
|
84 |
+
def append_nvcc_threads(nvcc_extra_args):
|
85 |
+
return nvcc_extra_args + ["--threads", "4"]
|
86 |
+
|
87 |
+
|
88 |
+
cmdclass = {}
|
89 |
+
ext_modules = []
|
90 |
+
|
91 |
+
if not SKIP_CUDA_BUILD:
|
92 |
+
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
|
93 |
+
TORCH_MAJOR = int(torch.__version__.split(".")[0])
|
94 |
+
TORCH_MINOR = int(torch.__version__.split(".")[1])
|
95 |
+
|
96 |
+
check_if_cuda_home_none("causal_conv1d")
|
97 |
+
# Check, if CUDA11 is installed for compute capability 8.0
|
98 |
+
cc_flag = []
|
99 |
+
if CUDA_HOME is not None:
|
100 |
+
_, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
|
101 |
+
if bare_metal_version < Version("11.6"):
|
102 |
+
raise RuntimeError(
|
103 |
+
"causal_conv1d is only supported on CUDA 11.6 and above. "
|
104 |
+
"Note: make sure nvcc has a supported version by running nvcc -V."
|
105 |
+
)
|
106 |
+
|
107 |
+
cc_flag.append("-gencode")
|
108 |
+
cc_flag.append("arch=compute_70,code=sm_70")
|
109 |
+
cc_flag.append("-gencode")
|
110 |
+
cc_flag.append("arch=compute_80,code=sm_80")
|
111 |
+
if bare_metal_version >= Version("11.8"):
|
112 |
+
cc_flag.append("-gencode")
|
113 |
+
cc_flag.append("arch=compute_90,code=sm_90")
|
114 |
+
|
115 |
+
# HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
|
116 |
+
# torch._C._GLIBCXX_USE_CXX11_ABI
|
117 |
+
# https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
|
118 |
+
if FORCE_CXX11_ABI:
|
119 |
+
torch._C._GLIBCXX_USE_CXX11_ABI = True
|
120 |
+
|
121 |
+
ext_modules.append(
|
122 |
+
CUDAExtension(
|
123 |
+
name="causal_conv1d_cuda",
|
124 |
+
sources=[
|
125 |
+
"csrc/causal_conv1d.cpp",
|
126 |
+
"csrc/causal_conv1d_fwd.cu",
|
127 |
+
"csrc/causal_conv1d_bwd.cu",
|
128 |
+
"csrc/causal_conv1d_update.cu",
|
129 |
+
],
|
130 |
+
extra_compile_args={
|
131 |
+
"cxx": ["-O3"],
|
132 |
+
"nvcc": append_nvcc_threads(
|
133 |
+
[
|
134 |
+
"-O3",
|
135 |
+
"-U__CUDA_NO_HALF_OPERATORS__",
|
136 |
+
"-U__CUDA_NO_HALF_CONVERSIONS__",
|
137 |
+
"-U__CUDA_NO_BFLOAT16_OPERATORS__",
|
138 |
+
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
|
139 |
+
"-U__CUDA_NO_BFLOAT162_OPERATORS__",
|
140 |
+
"-U__CUDA_NO_BFLOAT162_CONVERSIONS__",
|
141 |
+
"--expt-relaxed-constexpr",
|
142 |
+
"--expt-extended-lambda",
|
143 |
+
"--use_fast_math",
|
144 |
+
"--ptxas-options=-v",
|
145 |
+
"-lineinfo",
|
146 |
+
]
|
147 |
+
+ cc_flag
|
148 |
+
),
|
149 |
+
},
|
150 |
+
include_dirs=[this_dir],
|
151 |
+
)
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
def get_package_version():
|
156 |
+
with open(Path(this_dir) / "causal_conv1d" / "__init__.py", "r") as f:
|
157 |
+
version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
|
158 |
+
public_version = ast.literal_eval(version_match.group(1))
|
159 |
+
local_version = os.environ.get("CAUSAL_CONV1D_LOCAL_VERSION")
|
160 |
+
if local_version:
|
161 |
+
return f"{public_version}+{local_version}"
|
162 |
+
else:
|
163 |
+
return str(public_version)
|
164 |
+
|
165 |
+
|
166 |
+
def get_wheel_url():
|
167 |
+
# Determine the version numbers that will be used to determine the correct wheel
|
168 |
+
# We're using the CUDA version used to build torch, not the one currently installed
|
169 |
+
# _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
|
170 |
+
torch_cuda_version = parse(torch.version.cuda)
|
171 |
+
torch_version_raw = parse(torch.__version__)
|
172 |
+
# For CUDA 11, we only compile for CUDA 11.8, and for CUDA 12 we only compile for CUDA 12.2
|
173 |
+
# to save CI time. Minor versions should be compatible.
|
174 |
+
torch_cuda_version = parse("11.8") if torch_cuda_version.major == 11 else parse("12.2")
|
175 |
+
python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
|
176 |
+
platform_name = get_platform()
|
177 |
+
causal_conv1d_version = get_package_version()
|
178 |
+
# cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
|
179 |
+
cuda_version = f"{torch_cuda_version.major}{torch_cuda_version.minor}"
|
180 |
+
torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}"
|
181 |
+
cxx11_abi = str(torch._C._GLIBCXX_USE_CXX11_ABI).upper()
|
182 |
+
|
183 |
+
# Determine wheel URL based on CUDA version, torch version, python version and OS
|
184 |
+
wheel_filename = f"{PACKAGE_NAME}-{causal_conv1d_version}+cu{cuda_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl"
|
185 |
+
wheel_url = BASE_WHEEL_URL.format(
|
186 |
+
tag_name=f"v{causal_conv1d_version}", wheel_name=wheel_filename
|
187 |
+
)
|
188 |
+
return wheel_url, wheel_filename
|
189 |
+
|
190 |
+
|
191 |
+
class CachedWheelsCommand(_bdist_wheel):
|
192 |
+
"""
|
193 |
+
The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot
|
194 |
+
find an existing wheel (which is currently the case for all installs). We use
|
195 |
+
the environment parameters to detect whether there is already a pre-built version of a compatible
|
196 |
+
wheel available and short-circuits the standard full build pipeline.
|
197 |
+
"""
|
198 |
+
|
199 |
+
def run(self):
|
200 |
+
if FORCE_BUILD:
|
201 |
+
return super().run()
|
202 |
+
|
203 |
+
wheel_url, wheel_filename = get_wheel_url()
|
204 |
+
print("Guessing wheel URL: ", wheel_url)
|
205 |
+
try:
|
206 |
+
urllib.request.urlretrieve(wheel_url, wheel_filename)
|
207 |
+
|
208 |
+
# Make the archive
|
209 |
+
# Lifted from the root wheel processing command
|
210 |
+
# https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85
|
211 |
+
if not os.path.exists(self.dist_dir):
|
212 |
+
os.makedirs(self.dist_dir)
|
213 |
+
|
214 |
+
impl_tag, abi_tag, plat_tag = self.get_tag()
|
215 |
+
archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}"
|
216 |
+
|
217 |
+
wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl")
|
218 |
+
print("Raw wheel path", wheel_path)
|
219 |
+
os.rename(wheel_filename, wheel_path)
|
220 |
+
except urllib.error.HTTPError:
|
221 |
+
print("Precompiled wheel not found. Building from source...")
|
222 |
+
# If the wheel could not be downloaded, build from source
|
223 |
+
super().run()
|
224 |
+
|
225 |
+
|
226 |
+
setup(
|
227 |
+
name=PACKAGE_NAME,
|
228 |
+
version=get_package_version(),
|
229 |
+
packages=find_packages(
|
230 |
+
exclude=(
|
231 |
+
"build",
|
232 |
+
"csrc",
|
233 |
+
"include",
|
234 |
+
"tests",
|
235 |
+
"dist",
|
236 |
+
"docs",
|
237 |
+
"benchmarks",
|
238 |
+
"causal_conv1d.egg-info",
|
239 |
+
)
|
240 |
+
),
|
241 |
+
author="Tri Dao",
|
242 |
+
author_email="tri@tridao.me",
|
243 |
+
description="Causal depthwise conv1d in CUDA, with a PyTorch interface",
|
244 |
+
long_description=long_description,
|
245 |
+
long_description_content_type="text/markdown",
|
246 |
+
url="https://github.com/Dao-AILab/causal-conv1d",
|
247 |
+
classifiers=[
|
248 |
+
"Programming Language :: Python :: 3",
|
249 |
+
"License :: OSI Approved :: BSD License",
|
250 |
+
"Operating System :: Unix",
|
251 |
+
],
|
252 |
+
ext_modules=ext_modules,
|
253 |
+
cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": BuildExtension}
|
254 |
+
if ext_modules
|
255 |
+
else {
|
256 |
+
"bdist_wheel": CachedWheelsCommand,
|
257 |
+
},
|
258 |
+
python_requires=">=3.7",
|
259 |
+
install_requires=[
|
260 |
+
"torch",
|
261 |
+
"packaging",
|
262 |
+
"ninja",
|
263 |
+
],
|
264 |
+
)
|
causal-conv1d/tests/test_causal_conv1d.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2023, Tri Dao.
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import pytest
|
7 |
+
|
8 |
+
from einops import rearrange
|
9 |
+
|
10 |
+
from causal_conv1d.causal_conv1d_interface import causal_conv1d_fn, causal_conv1d_ref
|
11 |
+
from causal_conv1d.causal_conv1d_interface import causal_conv1d_update, causal_conv1d_update_ref
|
12 |
+
|
13 |
+
|
14 |
+
@pytest.mark.parametrize("channel_last", [False, True])
|
15 |
+
# @pytest.mark.parametrize('channel_last', [True])
|
16 |
+
@pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
|
17 |
+
# @pytest.mark.parametrize('itype', [torch.float16])
|
18 |
+
@pytest.mark.parametrize("silu_activation", [False, True])
|
19 |
+
# @pytest.mark.parametrize('silu_activation', [True])
|
20 |
+
@pytest.mark.parametrize("has_bias", [False, True])
|
21 |
+
# @pytest.mark.parametrize('has_bias', [True])
|
22 |
+
@pytest.mark.parametrize("width", [2, 3, 4])
|
23 |
+
# @pytest.mark.parametrize('width', [2])
|
24 |
+
@pytest.mark.parametrize(
|
25 |
+
"seqlen", [8, 16, 32, 64, 128, 151, 256, 372, 512, 784, 1024, 1134, 2048, 4096]
|
26 |
+
)
|
27 |
+
# @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096])
|
28 |
+
# @pytest.mark.parametrize('seqlen', [128])
|
29 |
+
def test_causal_conv1d(seqlen, width, has_bias, silu_activation, itype, channel_last):
|
30 |
+
device = "cuda"
|
31 |
+
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
|
32 |
+
if itype == torch.bfloat16:
|
33 |
+
rtol, atol = 1e-2, 5e-2
|
34 |
+
rtolw, atolw = (1e-3, 1e-3)
|
35 |
+
# set seed
|
36 |
+
torch.random.manual_seed(0)
|
37 |
+
batch_size = 2
|
38 |
+
# batch_size = 1
|
39 |
+
dim = 4096 + 32 # Try dim not divisible by 64
|
40 |
+
# dim = 64
|
41 |
+
if not channel_last:
|
42 |
+
x = torch.randn(batch_size, 4096 + dim + 64, seqlen, device=device, dtype=itype)[:, 4096:4096 + dim, :].requires_grad_()
|
43 |
+
else:
|
44 |
+
x = rearrange(
|
45 |
+
torch.randn(batch_size, seqlen, 4096 + dim + 64, device=device, dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s"
|
46 |
+
).requires_grad_()
|
47 |
+
weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True)
|
48 |
+
if has_bias:
|
49 |
+
bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
|
50 |
+
else:
|
51 |
+
bias = None
|
52 |
+
x_ref = x.detach().clone().requires_grad_()
|
53 |
+
weight_ref = weight.detach().clone().requires_grad_()
|
54 |
+
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None
|
55 |
+
activation = None if not silu_activation else "silu"
|
56 |
+
out = causal_conv1d_fn(x, weight, bias, activation=activation)
|
57 |
+
out_ref = causal_conv1d_ref(x_ref, weight_ref, bias_ref, activation=activation)
|
58 |
+
|
59 |
+
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
60 |
+
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
61 |
+
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
|
62 |
+
|
63 |
+
g = torch.randn_like(out)
|
64 |
+
out_ref.backward(g)
|
65 |
+
out.backward(g)
|
66 |
+
|
67 |
+
print(f"dx max diff: {(x.grad - x_ref.grad).abs().max().item()}")
|
68 |
+
print(f"dweight max diff: {(weight.grad - weight_ref.grad).abs().max().item()}")
|
69 |
+
if has_bias:
|
70 |
+
print(f"dbias max diff: {(bias.grad - bias_ref.grad).abs().max().item()}")
|
71 |
+
|
72 |
+
assert torch.allclose(x.grad, x_ref.grad.to(dtype=itype), rtol=rtol, atol=atol)
|
73 |
+
assert torch.allclose(weight.grad, weight_ref.grad, rtol=rtolw, atol=atolw)
|
74 |
+
if has_bias:
|
75 |
+
assert torch.allclose(bias.grad, bias_ref.grad, rtol=rtolw, atol=atolw)
|
76 |
+
|
77 |
+
|
78 |
+
@pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
|
79 |
+
# @pytest.mark.parametrize('itype', [torch.float16])
|
80 |
+
@pytest.mark.parametrize("silu_activation", [False, True])
|
81 |
+
# @pytest.mark.parametrize('silu_activation', [False])
|
82 |
+
@pytest.mark.parametrize("has_bias", [False, True])
|
83 |
+
# @pytest.mark.parametrize('has_bias', [True])
|
84 |
+
@pytest.mark.parametrize("width", [2, 3, 4])
|
85 |
+
# @pytest.mark.parametrize('width', [2])
|
86 |
+
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
|
87 |
+
# @pytest.mark.parametrize("dim", [2048])
|
88 |
+
def test_causal_conv1d_update(dim, width, has_bias, silu_activation, itype):
|
89 |
+
device = "cuda"
|
90 |
+
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
|
91 |
+
if itype == torch.bfloat16:
|
92 |
+
rtol, atol = 1e-2, 5e-2
|
93 |
+
rtolw, atolw = (1e-3, 1e-3)
|
94 |
+
# set seed
|
95 |
+
torch.random.manual_seed(0)
|
96 |
+
batch_size = 2
|
97 |
+
# batch_size = 1
|
98 |
+
# dim = 64
|
99 |
+
x = torch.randn(batch_size, dim, device=device, dtype=itype)
|
100 |
+
conv_state = torch.randn(batch_size, dim, width, device=device, dtype=itype)
|
101 |
+
weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True)
|
102 |
+
if has_bias:
|
103 |
+
bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
|
104 |
+
else:
|
105 |
+
bias = None
|
106 |
+
conv_state_ref = conv_state.detach().clone()
|
107 |
+
activation = None if not silu_activation else "silu"
|
108 |
+
out = causal_conv1d_update(x, conv_state, weight, bias, activation=activation)
|
109 |
+
out_ref = causal_conv1d_update_ref(x, conv_state_ref, weight, bias, activation=activation)
|
110 |
+
|
111 |
+
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
112 |
+
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
113 |
+
assert torch.equal(conv_state, conv_state_ref)
|
114 |
+
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
|
115 |
+
|
116 |
+
|
117 |
+
# @pytest.mark.parametrize("channel_last", [False, True])
|
118 |
+
@pytest.mark.parametrize('channel_last', [True])
|
119 |
+
# @pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
|
120 |
+
@pytest.mark.parametrize('itype', [torch.bfloat16])
|
121 |
+
# @pytest.mark.parametrize("silu_activation", [False, True])
|
122 |
+
@pytest.mark.parametrize('silu_activation', [True])
|
123 |
+
# @pytest.mark.parametrize("has_bias", [False, True])
|
124 |
+
@pytest.mark.parametrize('has_bias', [True])
|
125 |
+
# @pytest.mark.parametrize("width", [2, 3, 4])
|
126 |
+
@pytest.mark.parametrize('width', [4])
|
127 |
+
@pytest.mark.parametrize(
|
128 |
+
# "seqlen", [8, 16, 32, 64, 128, 151, 256, 372, 512, 784, 1024, 1134, 2048, 4096]
|
129 |
+
"seqlen", [2048]
|
130 |
+
)
|
131 |
+
# @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096])
|
132 |
+
# @pytest.mark.parametrize('seqlen', [128])
|
133 |
+
def test_causal_conv1d_race_condition(seqlen, width, has_bias, silu_activation, itype, channel_last):
|
134 |
+
device = "cuda"
|
135 |
+
# set seed
|
136 |
+
torch.random.manual_seed(0)
|
137 |
+
batch_size = 2
|
138 |
+
# batch_size = 1
|
139 |
+
dim = 4096 + 32 # Try dim not divisible by 64
|
140 |
+
# dim = 64
|
141 |
+
if not channel_last:
|
142 |
+
x = torch.randn(batch_size, 4096 + dim + 64, seqlen, device=device, dtype=itype)[:, 4096:4096 + dim, :].requires_grad_()
|
143 |
+
else:
|
144 |
+
x = rearrange(
|
145 |
+
torch.randn(batch_size, seqlen, 4096 + dim + 64, device=device, dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s"
|
146 |
+
).requires_grad_()
|
147 |
+
weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True)
|
148 |
+
if has_bias:
|
149 |
+
bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
|
150 |
+
else:
|
151 |
+
bias = None
|
152 |
+
activation = None if not silu_activation else "silu"
|
153 |
+
out0 = causal_conv1d_fn(x, weight, bias, activation=activation)
|
154 |
+
g = torch.randn_like(out0)
|
155 |
+
dx0, dw0, db0 = torch.autograd.grad(out0, (x, weight, bias), g)
|
156 |
+
dw_atol = 1e-4
|
157 |
+
db_atol = 1e-4
|
158 |
+
|
159 |
+
for i in range(10000):
|
160 |
+
out = causal_conv1d_fn(x, weight, bias, activation=activation)
|
161 |
+
dx, dw, db = torch.autograd.grad(out, (x, weight, bias), g)
|
162 |
+
dw_equal = torch.allclose(dw, dw0, atol=dw_atol)
|
163 |
+
# if not dw_equal:
|
164 |
+
# breakpoint()
|
165 |
+
if has_bias:
|
166 |
+
db_equal = torch.allclose(db, db0, atol=db_atol)
|
167 |
+
# if not db_equal:
|
168 |
+
# breakpoint()
|
169 |
+
assert torch.equal(out, out0)
|
170 |
+
assert torch.equal(dx, dx0)
|
171 |
+
assert dw_equal
|
172 |
+
if has_bias:
|
173 |
+
assert dw_equal
|
imagenet_class_index.py
ADDED
@@ -0,0 +1,1002 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
imagenet_classnames = {
|
2 |
+
"0": ["n01440764", "tench"],
|
3 |
+
"1": ["n01443537", "goldfish"],
|
4 |
+
"2": ["n01484850", "great_white_shark"],
|
5 |
+
"3": ["n01491361", "tiger_shark"],
|
6 |
+
"4": ["n01494475", "hammerhead"],
|
7 |
+
"5": ["n01496331", "electric_ray"],
|
8 |
+
"6": ["n01498041", "stingray"],
|
9 |
+
"7": ["n01514668", "cock"],
|
10 |
+
"8": ["n01514859", "hen"],
|
11 |
+
"9": ["n01518878", "ostrich"],
|
12 |
+
"10": ["n01530575", "brambling"],
|
13 |
+
"11": ["n01531178", "goldfinch"],
|
14 |
+
"12": ["n01532829", "house_finch"],
|
15 |
+
"13": ["n01534433", "junco"],
|
16 |
+
"14": ["n01537544", "indigo_bunting"],
|
17 |
+
"15": ["n01558993", "robin"],
|
18 |
+
"16": ["n01560419", "bulbul"],
|
19 |
+
"17": ["n01580077", "jay"],
|
20 |
+
"18": ["n01582220", "magpie"],
|
21 |
+
"19": ["n01592084", "chickadee"],
|
22 |
+
"20": ["n01601694", "water_ouzel"],
|
23 |
+
"21": ["n01608432", "kite"],
|
24 |
+
"22": ["n01614925", "bald_eagle"],
|
25 |
+
"23": ["n01616318", "vulture"],
|
26 |
+
"24": ["n01622779", "great_grey_owl"],
|
27 |
+
"25": ["n01629819", "European_fire_salamander"],
|
28 |
+
"26": ["n01630670", "common_newt"],
|
29 |
+
"27": ["n01631663", "eft"],
|
30 |
+
"28": ["n01632458", "spotted_salamander"],
|
31 |
+
"29": ["n01632777", "axolotl"],
|
32 |
+
"30": ["n01641577", "bullfrog"],
|
33 |
+
"31": ["n01644373", "tree_frog"],
|
34 |
+
"32": ["n01644900", "tailed_frog"],
|
35 |
+
"33": ["n01664065", "loggerhead"],
|
36 |
+
"34": ["n01665541", "leatherback_turtle"],
|
37 |
+
"35": ["n01667114", "mud_turtle"],
|
38 |
+
"36": ["n01667778", "terrapin"],
|
39 |
+
"37": ["n01669191", "box_turtle"],
|
40 |
+
"38": ["n01675722", "banded_gecko"],
|
41 |
+
"39": ["n01677366", "common_iguana"],
|
42 |
+
"40": ["n01682714", "American_chameleon"],
|
43 |
+
"41": ["n01685808", "whiptail"],
|
44 |
+
"42": ["n01687978", "agama"],
|
45 |
+
"43": ["n01688243", "frilled_lizard"],
|
46 |
+
"44": ["n01689811", "alligator_lizard"],
|
47 |
+
"45": ["n01692333", "Gila_monster"],
|
48 |
+
"46": ["n01693334", "green_lizard"],
|
49 |
+
"47": ["n01694178", "African_chameleon"],
|
50 |
+
"48": ["n01695060", "Komodo_dragon"],
|
51 |
+
"49": ["n01697457", "African_crocodile"],
|
52 |
+
"50": ["n01698640", "American_alligator"],
|
53 |
+
"51": ["n01704323", "triceratops"],
|
54 |
+
"52": ["n01728572", "thunder_snake"],
|
55 |
+
"53": ["n01728920", "ringneck_snake"],
|
56 |
+
"54": ["n01729322", "hognose_snake"],
|
57 |
+
"55": ["n01729977", "green_snake"],
|
58 |
+
"56": ["n01734418", "king_snake"],
|
59 |
+
"57": ["n01735189", "garter_snake"],
|
60 |
+
"58": ["n01737021", "water_snake"],
|
61 |
+
"59": ["n01739381", "vine_snake"],
|
62 |
+
"60": ["n01740131", "night_snake"],
|
63 |
+
"61": ["n01742172", "boa_constrictor"],
|
64 |
+
"62": ["n01744401", "rock_python"],
|
65 |
+
"63": ["n01748264", "Indian_cobra"],
|
66 |
+
"64": ["n01749939", "green_mamba"],
|
67 |
+
"65": ["n01751748", "sea_snake"],
|
68 |
+
"66": ["n01753488", "horned_viper"],
|
69 |
+
"67": ["n01755581", "diamondback"],
|
70 |
+
"68": ["n01756291", "sidewinder"],
|
71 |
+
"69": ["n01768244", "trilobite"],
|
72 |
+
"70": ["n01770081", "harvestman"],
|
73 |
+
"71": ["n01770393", "scorpion"],
|
74 |
+
"72": ["n01773157", "black_and_gold_garden_spider"],
|
75 |
+
"73": ["n01773549", "barn_spider"],
|
76 |
+
"74": ["n01773797", "garden_spider"],
|
77 |
+
"75": ["n01774384", "black_widow"],
|
78 |
+
"76": ["n01774750", "tarantula"],
|
79 |
+
"77": ["n01775062", "wolf_spider"],
|
80 |
+
"78": ["n01776313", "tick"],
|
81 |
+
"79": ["n01784675", "centipede"],
|
82 |
+
"80": ["n01795545", "black_grouse"],
|
83 |
+
"81": ["n01796340", "ptarmigan"],
|
84 |
+
"82": ["n01797886", "ruffed_grouse"],
|
85 |
+
"83": ["n01798484", "prairie_chicken"],
|
86 |
+
"84": ["n01806143", "peacock"],
|
87 |
+
"85": ["n01806567", "quail"],
|
88 |
+
"86": ["n01807496", "partridge"],
|
89 |
+
"87": ["n01817953", "African_grey"],
|
90 |
+
"88": ["n01818515", "macaw"],
|
91 |
+
"89": ["n01819313", "sulphur-crested_cockatoo"],
|
92 |
+
"90": ["n01820546", "lorikeet"],
|
93 |
+
"91": ["n01824575", "coucal"],
|
94 |
+
"92": ["n01828970", "bee_eater"],
|
95 |
+
"93": ["n01829413", "hornbill"],
|
96 |
+
"94": ["n01833805", "hummingbird"],
|
97 |
+
"95": ["n01843065", "jacamar"],
|
98 |
+
"96": ["n01843383", "toucan"],
|
99 |
+
"97": ["n01847000", "drake"],
|
100 |
+
"98": ["n01855032", "red-breasted_merganser"],
|
101 |
+
"99": ["n01855672", "goose"],
|
102 |
+
"100": ["n01860187", "black_swan"],
|
103 |
+
"101": ["n01871265", "tusker"],
|
104 |
+
"102": ["n01872401", "echidna"],
|
105 |
+
"103": ["n01873310", "platypus"],
|
106 |
+
"104": ["n01877812", "wallaby"],
|
107 |
+
"105": ["n01882714", "koala"],
|
108 |
+
"106": ["n01883070", "wombat"],
|
109 |
+
"107": ["n01910747", "jellyfish"],
|
110 |
+
"108": ["n01914609", "sea_anemone"],
|
111 |
+
"109": ["n01917289", "brain_coral"],
|
112 |
+
"110": ["n01924916", "flatworm"],
|
113 |
+
"111": ["n01930112", "nematode"],
|
114 |
+
"112": ["n01943899", "conch"],
|
115 |
+
"113": ["n01944390", "snail"],
|
116 |
+
"114": ["n01945685", "slug"],
|
117 |
+
"115": ["n01950731", "sea_slug"],
|
118 |
+
"116": ["n01955084", "chiton"],
|
119 |
+
"117": ["n01968897", "chambered_nautilus"],
|
120 |
+
"118": ["n01978287", "Dungeness_crab"],
|
121 |
+
"119": ["n01978455", "rock_crab"],
|
122 |
+
"120": ["n01980166", "fiddler_crab"],
|
123 |
+
"121": ["n01981276", "king_crab"],
|
124 |
+
"122": ["n01983481", "American_lobster"],
|
125 |
+
"123": ["n01984695", "spiny_lobster"],
|
126 |
+
"124": ["n01985128", "crayfish"],
|
127 |
+
"125": ["n01986214", "hermit_crab"],
|
128 |
+
"126": ["n01990800", "isopod"],
|
129 |
+
"127": ["n02002556", "white_stork"],
|
130 |
+
"128": ["n02002724", "black_stork"],
|
131 |
+
"129": ["n02006656", "spoonbill"],
|
132 |
+
"130": ["n02007558", "flamingo"],
|
133 |
+
"131": ["n02009229", "little_blue_heron"],
|
134 |
+
"132": ["n02009912", "American_egret"],
|
135 |
+
"133": ["n02011460", "bittern"],
|
136 |
+
"134": ["n02012849", "crane"],
|
137 |
+
"135": ["n02013706", "limpkin"],
|
138 |
+
"136": ["n02017213", "European_gallinule"],
|
139 |
+
"137": ["n02018207", "American_coot"],
|
140 |
+
"138": ["n02018795", "bustard"],
|
141 |
+
"139": ["n02025239", "ruddy_turnstone"],
|
142 |
+
"140": ["n02027492", "red-backed_sandpiper"],
|
143 |
+
"141": ["n02028035", "redshank"],
|
144 |
+
"142": ["n02033041", "dowitcher"],
|
145 |
+
"143": ["n02037110", "oystercatcher"],
|
146 |
+
"144": ["n02051845", "pelican"],
|
147 |
+
"145": ["n02056570", "king_penguin"],
|
148 |
+
"146": ["n02058221", "albatross"],
|
149 |
+
"147": ["n02066245", "grey_whale"],
|
150 |
+
"148": ["n02071294", "killer_whale"],
|
151 |
+
"149": ["n02074367", "dugong"],
|
152 |
+
"150": ["n02077923", "sea_lion"],
|
153 |
+
"151": ["n02085620", "Chihuahua"],
|
154 |
+
"152": ["n02085782", "Japanese_spaniel"],
|
155 |
+
"153": ["n02085936", "Maltese_dog"],
|
156 |
+
"154": ["n02086079", "Pekinese"],
|
157 |
+
"155": ["n02086240", "Shih-Tzu"],
|
158 |
+
"156": ["n02086646", "Blenheim_spaniel"],
|
159 |
+
"157": ["n02086910", "papillon"],
|
160 |
+
"158": ["n02087046", "toy_terrier"],
|
161 |
+
"159": ["n02087394", "Rhodesian_ridgeback"],
|
162 |
+
"160": ["n02088094", "Afghan_hound"],
|
163 |
+
"161": ["n02088238", "basset"],
|
164 |
+
"162": ["n02088364", "beagle"],
|
165 |
+
"163": ["n02088466", "bloodhound"],
|
166 |
+
"164": ["n02088632", "bluetick"],
|
167 |
+
"165": ["n02089078", "black-and-tan_coonhound"],
|
168 |
+
"166": ["n02089867", "Walker_hound"],
|
169 |
+
"167": ["n02089973", "English_foxhound"],
|
170 |
+
"168": ["n02090379", "redbone"],
|
171 |
+
"169": ["n02090622", "borzoi"],
|
172 |
+
"170": ["n02090721", "Irish_wolfhound"],
|
173 |
+
"171": ["n02091032", "Italian_greyhound"],
|
174 |
+
"172": ["n02091134", "whippet"],
|
175 |
+
"173": ["n02091244", "Ibizan_hound"],
|
176 |
+
"174": ["n02091467", "Norwegian_elkhound"],
|
177 |
+
"175": ["n02091635", "otterhound"],
|
178 |
+
"176": ["n02091831", "Saluki"],
|
179 |
+
"177": ["n02092002", "Scottish_deerhound"],
|
180 |
+
"178": ["n02092339", "Weimaraner"],
|
181 |
+
"179": ["n02093256", "Staffordshire_bullterrier"],
|
182 |
+
"180": ["n02093428", "American_Staffordshire_terrier"],
|
183 |
+
"181": ["n02093647", "Bedlington_terrier"],
|
184 |
+
"182": ["n02093754", "Border_terrier"],
|
185 |
+
"183": ["n02093859", "Kerry_blue_terrier"],
|
186 |
+
"184": ["n02093991", "Irish_terrier"],
|
187 |
+
"185": ["n02094114", "Norfolk_terrier"],
|
188 |
+
"186": ["n02094258", "Norwich_terrier"],
|
189 |
+
"187": ["n02094433", "Yorkshire_terrier"],
|
190 |
+
"188": ["n02095314", "wire-haired_fox_terrier"],
|
191 |
+
"189": ["n02095570", "Lakeland_terrier"],
|
192 |
+
"190": ["n02095889", "Sealyham_terrier"],
|
193 |
+
"191": ["n02096051", "Airedale"],
|
194 |
+
"192": ["n02096177", "cairn"],
|
195 |
+
"193": ["n02096294", "Australian_terrier"],
|
196 |
+
"194": ["n02096437", "Dandie_Dinmont"],
|
197 |
+
"195": ["n02096585", "Boston_bull"],
|
198 |
+
"196": ["n02097047", "miniature_schnauzer"],
|
199 |
+
"197": ["n02097130", "giant_schnauzer"],
|
200 |
+
"198": ["n02097209", "standard_schnauzer"],
|
201 |
+
"199": ["n02097298", "Scotch_terrier"],
|
202 |
+
"200": ["n02097474", "Tibetan_terrier"],
|
203 |
+
"201": ["n02097658", "silky_terrier"],
|
204 |
+
"202": ["n02098105", "soft-coated_wheaten_terrier"],
|
205 |
+
"203": ["n02098286", "West_Highland_white_terrier"],
|
206 |
+
"204": ["n02098413", "Lhasa"],
|
207 |
+
"205": ["n02099267", "flat-coated_retriever"],
|
208 |
+
"206": ["n02099429", "curly-coated_retriever"],
|
209 |
+
"207": ["n02099601", "golden_retriever"],
|
210 |
+
"208": ["n02099712", "Labrador_retriever"],
|
211 |
+
"209": ["n02099849", "Chesapeake_Bay_retriever"],
|
212 |
+
"210": ["n02100236", "German_short-haired_pointer"],
|
213 |
+
"211": ["n02100583", "vizsla"],
|
214 |
+
"212": ["n02100735", "English_setter"],
|
215 |
+
"213": ["n02100877", "Irish_setter"],
|
216 |
+
"214": ["n02101006", "Gordon_setter"],
|
217 |
+
"215": ["n02101388", "Brittany_spaniel"],
|
218 |
+
"216": ["n02101556", "clumber"],
|
219 |
+
"217": ["n02102040", "English_springer"],
|
220 |
+
"218": ["n02102177", "Welsh_springer_spaniel"],
|
221 |
+
"219": ["n02102318", "cocker_spaniel"],
|
222 |
+
"220": ["n02102480", "Sussex_spaniel"],
|
223 |
+
"221": ["n02102973", "Irish_water_spaniel"],
|
224 |
+
"222": ["n02104029", "kuvasz"],
|
225 |
+
"223": ["n02104365", "schipperke"],
|
226 |
+
"224": ["n02105056", "groenendael"],
|
227 |
+
"225": ["n02105162", "malinois"],
|
228 |
+
"226": ["n02105251", "briard"],
|
229 |
+
"227": ["n02105412", "kelpie"],
|
230 |
+
"228": ["n02105505", "komondor"],
|
231 |
+
"229": ["n02105641", "Old_English_sheepdog"],
|
232 |
+
"230": ["n02105855", "Shetland_sheepdog"],
|
233 |
+
"231": ["n02106030", "collie"],
|
234 |
+
"232": ["n02106166", "Border_collie"],
|
235 |
+
"233": ["n02106382", "Bouvier_des_Flandres"],
|
236 |
+
"234": ["n02106550", "Rottweiler"],
|
237 |
+
"235": ["n02106662", "German_shepherd"],
|
238 |
+
"236": ["n02107142", "Doberman"],
|
239 |
+
"237": ["n02107312", "miniature_pinscher"],
|
240 |
+
"238": ["n02107574", "Greater_Swiss_Mountain_dog"],
|
241 |
+
"239": ["n02107683", "Bernese_mountain_dog"],
|
242 |
+
"240": ["n02107908", "Appenzeller"],
|
243 |
+
"241": ["n02108000", "EntleBucher"],
|
244 |
+
"242": ["n02108089", "boxer"],
|
245 |
+
"243": ["n02108422", "bull_mastiff"],
|
246 |
+
"244": ["n02108551", "Tibetan_mastiff"],
|
247 |
+
"245": ["n02108915", "French_bulldog"],
|
248 |
+
"246": ["n02109047", "Great_Dane"],
|
249 |
+
"247": ["n02109525", "Saint_Bernard"],
|
250 |
+
"248": ["n02109961", "Eskimo_dog"],
|
251 |
+
"249": ["n02110063", "malamute"],
|
252 |
+
"250": ["n02110185", "Siberian_husky"],
|
253 |
+
"251": ["n02110341", "dalmatian"],
|
254 |
+
"252": ["n02110627", "affenpinscher"],
|
255 |
+
"253": ["n02110806", "basenji"],
|
256 |
+
"254": ["n02110958", "pug"],
|
257 |
+
"255": ["n02111129", "Leonberg"],
|
258 |
+
"256": ["n02111277", "Newfoundland"],
|
259 |
+
"257": ["n02111500", "Great_Pyrenees"],
|
260 |
+
"258": ["n02111889", "Samoyed"],
|
261 |
+
"259": ["n02112018", "Pomeranian"],
|
262 |
+
"260": ["n02112137", "chow"],
|
263 |
+
"261": ["n02112350", "keeshond"],
|
264 |
+
"262": ["n02112706", "Brabancon_griffon"],
|
265 |
+
"263": ["n02113023", "Pembroke"],
|
266 |
+
"264": ["n02113186", "Cardigan"],
|
267 |
+
"265": ["n02113624", "toy_poodle"],
|
268 |
+
"266": ["n02113712", "miniature_poodle"],
|
269 |
+
"267": ["n02113799", "standard_poodle"],
|
270 |
+
"268": ["n02113978", "Mexican_hairless"],
|
271 |
+
"269": ["n02114367", "timber_wolf"],
|
272 |
+
"270": ["n02114548", "white_wolf"],
|
273 |
+
"271": ["n02114712", "red_wolf"],
|
274 |
+
"272": ["n02114855", "coyote"],
|
275 |
+
"273": ["n02115641", "dingo"],
|
276 |
+
"274": ["n02115913", "dhole"],
|
277 |
+
"275": ["n02116738", "African_hunting_dog"],
|
278 |
+
"276": ["n02117135", "hyena"],
|
279 |
+
"277": ["n02119022", "red_fox"],
|
280 |
+
"278": ["n02119789", "kit_fox"],
|
281 |
+
"279": ["n02120079", "Arctic_fox"],
|
282 |
+
"280": ["n02120505", "grey_fox"],
|
283 |
+
"281": ["n02123045", "tabby"],
|
284 |
+
"282": ["n02123159", "tiger_cat"],
|
285 |
+
"283": ["n02123394", "Persian_cat"],
|
286 |
+
"284": ["n02123597", "Siamese_cat"],
|
287 |
+
"285": ["n02124075", "Egyptian_cat"],
|
288 |
+
"286": ["n02125311", "cougar"],
|
289 |
+
"287": ["n02127052", "lynx"],
|
290 |
+
"288": ["n02128385", "leopard"],
|
291 |
+
"289": ["n02128757", "snow_leopard"],
|
292 |
+
"290": ["n02128925", "jaguar"],
|
293 |
+
"291": ["n02129165", "lion"],
|
294 |
+
"292": ["n02129604", "tiger"],
|
295 |
+
"293": ["n02130308", "cheetah"],
|
296 |
+
"294": ["n02132136", "brown_bear"],
|
297 |
+
"295": ["n02133161", "American_black_bear"],
|
298 |
+
"296": ["n02134084", "ice_bear"],
|
299 |
+
"297": ["n02134418", "sloth_bear"],
|
300 |
+
"298": ["n02137549", "mongoose"],
|
301 |
+
"299": ["n02138441", "meerkat"],
|
302 |
+
"300": ["n02165105", "tiger_beetle"],
|
303 |
+
"301": ["n02165456", "ladybug"],
|
304 |
+
"302": ["n02167151", "ground_beetle"],
|
305 |
+
"303": ["n02168699", "long-horned_beetle"],
|
306 |
+
"304": ["n02169497", "leaf_beetle"],
|
307 |
+
"305": ["n02172182", "dung_beetle"],
|
308 |
+
"306": ["n02174001", "rhinoceros_beetle"],
|
309 |
+
"307": ["n02177972", "weevil"],
|
310 |
+
"308": ["n02190166", "fly"],
|
311 |
+
"309": ["n02206856", "bee"],
|
312 |
+
"310": ["n02219486", "ant"],
|
313 |
+
"311": ["n02226429", "grasshopper"],
|
314 |
+
"312": ["n02229544", "cricket"],
|
315 |
+
"313": ["n02231487", "walking_stick"],
|
316 |
+
"314": ["n02233338", "cockroach"],
|
317 |
+
"315": ["n02236044", "mantis"],
|
318 |
+
"316": ["n02256656", "cicada"],
|
319 |
+
"317": ["n02259212", "leafhopper"],
|
320 |
+
"318": ["n02264363", "lacewing"],
|
321 |
+
"319": ["n02268443", "dragonfly"],
|
322 |
+
"320": ["n02268853", "damselfly"],
|
323 |
+
"321": ["n02276258", "admiral"],
|
324 |
+
"322": ["n02277742", "ringlet"],
|
325 |
+
"323": ["n02279972", "monarch"],
|
326 |
+
"324": ["n02280649", "cabbage_butterfly"],
|
327 |
+
"325": ["n02281406", "sulphur_butterfly"],
|
328 |
+
"326": ["n02281787", "lycaenid"],
|
329 |
+
"327": ["n02317335", "starfish"],
|
330 |
+
"328": ["n02319095", "sea_urchin"],
|
331 |
+
"329": ["n02321529", "sea_cucumber"],
|
332 |
+
"330": ["n02325366", "wood_rabbit"],
|
333 |
+
"331": ["n02326432", "hare"],
|
334 |
+
"332": ["n02328150", "Angora"],
|
335 |
+
"333": ["n02342885", "hamster"],
|
336 |
+
"334": ["n02346627", "porcupine"],
|
337 |
+
"335": ["n02356798", "fox_squirrel"],
|
338 |
+
"336": ["n02361337", "marmot"],
|
339 |
+
"337": ["n02363005", "beaver"],
|
340 |
+
"338": ["n02364673", "guinea_pig"],
|
341 |
+
"339": ["n02389026", "sorrel"],
|
342 |
+
"340": ["n02391049", "zebra"],
|
343 |
+
"341": ["n02395406", "hog"],
|
344 |
+
"342": ["n02396427", "wild_boar"],
|
345 |
+
"343": ["n02397096", "warthog"],
|
346 |
+
"344": ["n02398521", "hippopotamus"],
|
347 |
+
"345": ["n02403003", "ox"],
|
348 |
+
"346": ["n02408429", "water_buffalo"],
|
349 |
+
"347": ["n02410509", "bison"],
|
350 |
+
"348": ["n02412080", "ram"],
|
351 |
+
"349": ["n02415577", "bighorn"],
|
352 |
+
"350": ["n02417914", "ibex"],
|
353 |
+
"351": ["n02422106", "hartebeest"],
|
354 |
+
"352": ["n02422699", "impala"],
|
355 |
+
"353": ["n02423022", "gazelle"],
|
356 |
+
"354": ["n02437312", "Arabian_camel"],
|
357 |
+
"355": ["n02437616", "llama"],
|
358 |
+
"356": ["n02441942", "weasel"],
|
359 |
+
"357": ["n02442845", "mink"],
|
360 |
+
"358": ["n02443114", "polecat"],
|
361 |
+
"359": ["n02443484", "black-footed_ferret"],
|
362 |
+
"360": ["n02444819", "otter"],
|
363 |
+
"361": ["n02445715", "skunk"],
|
364 |
+
"362": ["n02447366", "badger"],
|
365 |
+
"363": ["n02454379", "armadillo"],
|
366 |
+
"364": ["n02457408", "three-toed_sloth"],
|
367 |
+
"365": ["n02480495", "orangutan"],
|
368 |
+
"366": ["n02480855", "gorilla"],
|
369 |
+
"367": ["n02481823", "chimpanzee"],
|
370 |
+
"368": ["n02483362", "gibbon"],
|
371 |
+
"369": ["n02483708", "siamang"],
|
372 |
+
"370": ["n02484975", "guenon"],
|
373 |
+
"371": ["n02486261", "patas"],
|
374 |
+
"372": ["n02486410", "baboon"],
|
375 |
+
"373": ["n02487347", "macaque"],
|
376 |
+
"374": ["n02488291", "langur"],
|
377 |
+
"375": ["n02488702", "colobus"],
|
378 |
+
"376": ["n02489166", "proboscis_monkey"],
|
379 |
+
"377": ["n02490219", "marmoset"],
|
380 |
+
"378": ["n02492035", "capuchin"],
|
381 |
+
"379": ["n02492660", "howler_monkey"],
|
382 |
+
"380": ["n02493509", "titi"],
|
383 |
+
"381": ["n02493793", "spider_monkey"],
|
384 |
+
"382": ["n02494079", "squirrel_monkey"],
|
385 |
+
"383": ["n02497673", "Madagascar_cat"],
|
386 |
+
"384": ["n02500267", "indri"],
|
387 |
+
"385": ["n02504013", "Indian_elephant"],
|
388 |
+
"386": ["n02504458", "African_elephant"],
|
389 |
+
"387": ["n02509815", "lesser_panda"],
|
390 |
+
"388": ["n02510455", "giant_panda"],
|
391 |
+
"389": ["n02514041", "barracouta"],
|
392 |
+
"390": ["n02526121", "eel"],
|
393 |
+
"391": ["n02536864", "coho"],
|
394 |
+
"392": ["n02606052", "rock_beauty"],
|
395 |
+
"393": ["n02607072", "anemone_fish"],
|
396 |
+
"394": ["n02640242", "sturgeon"],
|
397 |
+
"395": ["n02641379", "gar"],
|
398 |
+
"396": ["n02643566", "lionfish"],
|
399 |
+
"397": ["n02655020", "puffer"],
|
400 |
+
"398": ["n02666196", "abacus"],
|
401 |
+
"399": ["n02667093", "abaya"],
|
402 |
+
"400": ["n02669723", "academic_gown"],
|
403 |
+
"401": ["n02672831", "accordion"],
|
404 |
+
"402": ["n02676566", "acoustic_guitar"],
|
405 |
+
"403": ["n02687172", "aircraft_carrier"],
|
406 |
+
"404": ["n02690373", "airliner"],
|
407 |
+
"405": ["n02692877", "airship"],
|
408 |
+
"406": ["n02699494", "altar"],
|
409 |
+
"407": ["n02701002", "ambulance"],
|
410 |
+
"408": ["n02704792", "amphibian"],
|
411 |
+
"409": ["n02708093", "analog_clock"],
|
412 |
+
"410": ["n02727426", "apiary"],
|
413 |
+
"411": ["n02730930", "apron"],
|
414 |
+
"412": ["n02747177", "ashcan"],
|
415 |
+
"413": ["n02749479", "assault_rifle"],
|
416 |
+
"414": ["n02769748", "backpack"],
|
417 |
+
"415": ["n02776631", "bakery"],
|
418 |
+
"416": ["n02777292", "balance_beam"],
|
419 |
+
"417": ["n02782093", "balloon"],
|
420 |
+
"418": ["n02783161", "ballpoint"],
|
421 |
+
"419": ["n02786058", "Band_Aid"],
|
422 |
+
"420": ["n02787622", "banjo"],
|
423 |
+
"421": ["n02788148", "bannister"],
|
424 |
+
"422": ["n02790996", "barbell"],
|
425 |
+
"423": ["n02791124", "barber_chair"],
|
426 |
+
"424": ["n02791270", "barbershop"],
|
427 |
+
"425": ["n02793495", "barn"],
|
428 |
+
"426": ["n02794156", "barometer"],
|
429 |
+
"427": ["n02795169", "barrel"],
|
430 |
+
"428": ["n02797295", "barrow"],
|
431 |
+
"429": ["n02799071", "baseball"],
|
432 |
+
"430": ["n02802426", "basketball"],
|
433 |
+
"431": ["n02804414", "bassinet"],
|
434 |
+
"432": ["n02804610", "bassoon"],
|
435 |
+
"433": ["n02807133", "bathing_cap"],
|
436 |
+
"434": ["n02808304", "bath_towel"],
|
437 |
+
"435": ["n02808440", "bathtub"],
|
438 |
+
"436": ["n02814533", "beach_wagon"],
|
439 |
+
"437": ["n02814860", "beacon"],
|
440 |
+
"438": ["n02815834", "beaker"],
|
441 |
+
"439": ["n02817516", "bearskin"],
|
442 |
+
"440": ["n02823428", "beer_bottle"],
|
443 |
+
"441": ["n02823750", "beer_glass"],
|
444 |
+
"442": ["n02825657", "bell_cote"],
|
445 |
+
"443": ["n02834397", "bib"],
|
446 |
+
"444": ["n02835271", "bicycle-built-for-two"],
|
447 |
+
"445": ["n02837789", "bikini"],
|
448 |
+
"446": ["n02840245", "binder"],
|
449 |
+
"447": ["n02841315", "binoculars"],
|
450 |
+
"448": ["n02843684", "birdhouse"],
|
451 |
+
"449": ["n02859443", "boathouse"],
|
452 |
+
"450": ["n02860847", "bobsled"],
|
453 |
+
"451": ["n02865351", "bolo_tie"],
|
454 |
+
"452": ["n02869837", "bonnet"],
|
455 |
+
"453": ["n02870880", "bookcase"],
|
456 |
+
"454": ["n02871525", "bookshop"],
|
457 |
+
"455": ["n02877765", "bottlecap"],
|
458 |
+
"456": ["n02879718", "bow"],
|
459 |
+
"457": ["n02883205", "bow_tie"],
|
460 |
+
"458": ["n02892201", "brass"],
|
461 |
+
"459": ["n02892767", "brassiere"],
|
462 |
+
"460": ["n02894605", "breakwater"],
|
463 |
+
"461": ["n02895154", "breastplate"],
|
464 |
+
"462": ["n02906734", "broom"],
|
465 |
+
"463": ["n02909870", "bucket"],
|
466 |
+
"464": ["n02910353", "buckle"],
|
467 |
+
"465": ["n02916936", "bulletproof_vest"],
|
468 |
+
"466": ["n02917067", "bullet_train"],
|
469 |
+
"467": ["n02927161", "butcher_shop"],
|
470 |
+
"468": ["n02930766", "cab"],
|
471 |
+
"469": ["n02939185", "caldron"],
|
472 |
+
"470": ["n02948072", "candle"],
|
473 |
+
"471": ["n02950826", "cannon"],
|
474 |
+
"472": ["n02951358", "canoe"],
|
475 |
+
"473": ["n02951585", "can_opener"],
|
476 |
+
"474": ["n02963159", "cardigan"],
|
477 |
+
"475": ["n02965783", "car_mirror"],
|
478 |
+
"476": ["n02966193", "carousel"],
|
479 |
+
"477": ["n02966687", "carpenter's_kit"],
|
480 |
+
"478": ["n02971356", "carton"],
|
481 |
+
"479": ["n02974003", "car_wheel"],
|
482 |
+
"480": ["n02977058", "cash_machine"],
|
483 |
+
"481": ["n02978881", "cassette"],
|
484 |
+
"482": ["n02979186", "cassette_player"],
|
485 |
+
"483": ["n02980441", "castle"],
|
486 |
+
"484": ["n02981792", "catamaran"],
|
487 |
+
"485": ["n02988304", "CD_player"],
|
488 |
+
"486": ["n02992211", "cello"],
|
489 |
+
"487": ["n02992529", "cellular_telephone"],
|
490 |
+
"488": ["n02999410", "chain"],
|
491 |
+
"489": ["n03000134", "chainlink_fence"],
|
492 |
+
"490": ["n03000247", "chain_mail"],
|
493 |
+
"491": ["n03000684", "chain_saw"],
|
494 |
+
"492": ["n03014705", "chest"],
|
495 |
+
"493": ["n03016953", "chiffonier"],
|
496 |
+
"494": ["n03017168", "chime"],
|
497 |
+
"495": ["n03018349", "china_cabinet"],
|
498 |
+
"496": ["n03026506", "Christmas_stocking"],
|
499 |
+
"497": ["n03028079", "church"],
|
500 |
+
"498": ["n03032252", "cinema"],
|
501 |
+
"499": ["n03041632", "cleaver"],
|
502 |
+
"500": ["n03042490", "cliff_dwelling"],
|
503 |
+
"501": ["n03045698", "cloak"],
|
504 |
+
"502": ["n03047690", "clog"],
|
505 |
+
"503": ["n03062245", "cocktail_shaker"],
|
506 |
+
"504": ["n03063599", "coffee_mug"],
|
507 |
+
"505": ["n03063689", "coffeepot"],
|
508 |
+
"506": ["n03065424", "coil"],
|
509 |
+
"507": ["n03075370", "combination_lock"],
|
510 |
+
"508": ["n03085013", "computer_keyboard"],
|
511 |
+
"509": ["n03089624", "confectionery"],
|
512 |
+
"510": ["n03095699", "container_ship"],
|
513 |
+
"511": ["n03100240", "convertible"],
|
514 |
+
"512": ["n03109150", "corkscrew"],
|
515 |
+
"513": ["n03110669", "cornet"],
|
516 |
+
"514": ["n03124043", "cowboy_boot"],
|
517 |
+
"515": ["n03124170", "cowboy_hat"],
|
518 |
+
"516": ["n03125729", "cradle"],
|
519 |
+
"517": ["n03126707", "crane"],
|
520 |
+
"518": ["n03127747", "crash_helmet"],
|
521 |
+
"519": ["n03127925", "crate"],
|
522 |
+
"520": ["n03131574", "crib"],
|
523 |
+
"521": ["n03133878", "Crock_Pot"],
|
524 |
+
"522": ["n03134739", "croquet_ball"],
|
525 |
+
"523": ["n03141823", "crutch"],
|
526 |
+
"524": ["n03146219", "cuirass"],
|
527 |
+
"525": ["n03160309", "dam"],
|
528 |
+
"526": ["n03179701", "desk"],
|
529 |
+
"527": ["n03180011", "desktop_computer"],
|
530 |
+
"528": ["n03187595", "dial_telephone"],
|
531 |
+
"529": ["n03188531", "diaper"],
|
532 |
+
"530": ["n03196217", "digital_clock"],
|
533 |
+
"531": ["n03197337", "digital_watch"],
|
534 |
+
"532": ["n03201208", "dining_table"],
|
535 |
+
"533": ["n03207743", "dishrag"],
|
536 |
+
"534": ["n03207941", "dishwasher"],
|
537 |
+
"535": ["n03208938", "disk_brake"],
|
538 |
+
"536": ["n03216828", "dock"],
|
539 |
+
"537": ["n03218198", "dogsled"],
|
540 |
+
"538": ["n03220513", "dome"],
|
541 |
+
"539": ["n03223299", "doormat"],
|
542 |
+
"540": ["n03240683", "drilling_platform"],
|
543 |
+
"541": ["n03249569", "drum"],
|
544 |
+
"542": ["n03250847", "drumstick"],
|
545 |
+
"543": ["n03255030", "dumbbell"],
|
546 |
+
"544": ["n03259280", "Dutch_oven"],
|
547 |
+
"545": ["n03271574", "electric_fan"],
|
548 |
+
"546": ["n03272010", "electric_guitar"],
|
549 |
+
"547": ["n03272562", "electric_locomotive"],
|
550 |
+
"548": ["n03290653", "entertainment_center"],
|
551 |
+
"549": ["n03291819", "envelope"],
|
552 |
+
"550": ["n03297495", "espresso_maker"],
|
553 |
+
"551": ["n03314780", "face_powder"],
|
554 |
+
"552": ["n03325584", "feather_boa"],
|
555 |
+
"553": ["n03337140", "file"],
|
556 |
+
"554": ["n03344393", "fireboat"],
|
557 |
+
"555": ["n03345487", "fire_engine"],
|
558 |
+
"556": ["n03347037", "fire_screen"],
|
559 |
+
"557": ["n03355925", "flagpole"],
|
560 |
+
"558": ["n03372029", "flute"],
|
561 |
+
"559": ["n03376595", "folding_chair"],
|
562 |
+
"560": ["n03379051", "football_helmet"],
|
563 |
+
"561": ["n03384352", "forklift"],
|
564 |
+
"562": ["n03388043", "fountain"],
|
565 |
+
"563": ["n03388183", "fountain_pen"],
|
566 |
+
"564": ["n03388549", "four-poster"],
|
567 |
+
"565": ["n03393912", "freight_car"],
|
568 |
+
"566": ["n03394916", "French_horn"],
|
569 |
+
"567": ["n03400231", "frying_pan"],
|
570 |
+
"568": ["n03404251", "fur_coat"],
|
571 |
+
"569": ["n03417042", "garbage_truck"],
|
572 |
+
"570": ["n03424325", "gasmask"],
|
573 |
+
"571": ["n03425413", "gas_pump"],
|
574 |
+
"572": ["n03443371", "goblet"],
|
575 |
+
"573": ["n03444034", "go-kart"],
|
576 |
+
"574": ["n03445777", "golf_ball"],
|
577 |
+
"575": ["n03445924", "golfcart"],
|
578 |
+
"576": ["n03447447", "gondola"],
|
579 |
+
"577": ["n03447721", "gong"],
|
580 |
+
"578": ["n03450230", "gown"],
|
581 |
+
"579": ["n03452741", "grand_piano"],
|
582 |
+
"580": ["n03457902", "greenhouse"],
|
583 |
+
"581": ["n03459775", "grille"],
|
584 |
+
"582": ["n03461385", "grocery_store"],
|
585 |
+
"583": ["n03467068", "guillotine"],
|
586 |
+
"584": ["n03476684", "hair_slide"],
|
587 |
+
"585": ["n03476991", "hair_spray"],
|
588 |
+
"586": ["n03478589", "half_track"],
|
589 |
+
"587": ["n03481172", "hammer"],
|
590 |
+
"588": ["n03482405", "hamper"],
|
591 |
+
"589": ["n03483316", "hand_blower"],
|
592 |
+
"590": ["n03485407", "hand-held_computer"],
|
593 |
+
"591": ["n03485794", "handkerchief"],
|
594 |
+
"592": ["n03492542", "hard_disc"],
|
595 |
+
"593": ["n03494278", "harmonica"],
|
596 |
+
"594": ["n03495258", "harp"],
|
597 |
+
"595": ["n03496892", "harvester"],
|
598 |
+
"596": ["n03498962", "hatchet"],
|
599 |
+
"597": ["n03527444", "holster"],
|
600 |
+
"598": ["n03529860", "home_theater"],
|
601 |
+
"599": ["n03530642", "honeycomb"],
|
602 |
+
"600": ["n03532672", "hook"],
|
603 |
+
"601": ["n03534580", "hoopskirt"],
|
604 |
+
"602": ["n03535780", "horizontal_bar"],
|
605 |
+
"603": ["n03538406", "horse_cart"],
|
606 |
+
"604": ["n03544143", "hourglass"],
|
607 |
+
"605": ["n03584254", "iPod"],
|
608 |
+
"606": ["n03584829", "iron"],
|
609 |
+
"607": ["n03590841", "jack-o'-lantern"],
|
610 |
+
"608": ["n03594734", "jean"],
|
611 |
+
"609": ["n03594945", "jeep"],
|
612 |
+
"610": ["n03595614", "jersey"],
|
613 |
+
"611": ["n03598930", "jigsaw_puzzle"],
|
614 |
+
"612": ["n03599486", "jinrikisha"],
|
615 |
+
"613": ["n03602883", "joystick"],
|
616 |
+
"614": ["n03617480", "kimono"],
|
617 |
+
"615": ["n03623198", "knee_pad"],
|
618 |
+
"616": ["n03627232", "knot"],
|
619 |
+
"617": ["n03630383", "lab_coat"],
|
620 |
+
"618": ["n03633091", "ladle"],
|
621 |
+
"619": ["n03637318", "lampshade"],
|
622 |
+
"620": ["n03642806", "laptop"],
|
623 |
+
"621": ["n03649909", "lawn_mower"],
|
624 |
+
"622": ["n03657121", "lens_cap"],
|
625 |
+
"623": ["n03658185", "letter_opener"],
|
626 |
+
"624": ["n03661043", "library"],
|
627 |
+
"625": ["n03662601", "lifeboat"],
|
628 |
+
"626": ["n03666591", "lighter"],
|
629 |
+
"627": ["n03670208", "limousine"],
|
630 |
+
"628": ["n03673027", "liner"],
|
631 |
+
"629": ["n03676483", "lipstick"],
|
632 |
+
"630": ["n03680355", "Loafer"],
|
633 |
+
"631": ["n03690938", "lotion"],
|
634 |
+
"632": ["n03691459", "loudspeaker"],
|
635 |
+
"633": ["n03692522", "loupe"],
|
636 |
+
"634": ["n03697007", "lumbermill"],
|
637 |
+
"635": ["n03706229", "magnetic_compass"],
|
638 |
+
"636": ["n03709823", "mailbag"],
|
639 |
+
"637": ["n03710193", "mailbox"],
|
640 |
+
"638": ["n03710637", "maillot"],
|
641 |
+
"639": ["n03710721", "maillot"],
|
642 |
+
"640": ["n03717622", "manhole_cover"],
|
643 |
+
"641": ["n03720891", "maraca"],
|
644 |
+
"642": ["n03721384", "marimba"],
|
645 |
+
"643": ["n03724870", "mask"],
|
646 |
+
"644": ["n03729826", "matchstick"],
|
647 |
+
"645": ["n03733131", "maypole"],
|
648 |
+
"646": ["n03733281", "maze"],
|
649 |
+
"647": ["n03733805", "measuring_cup"],
|
650 |
+
"648": ["n03742115", "medicine_chest"],
|
651 |
+
"649": ["n03743016", "megalith"],
|
652 |
+
"650": ["n03759954", "microphone"],
|
653 |
+
"651": ["n03761084", "microwave"],
|
654 |
+
"652": ["n03763968", "military_uniform"],
|
655 |
+
"653": ["n03764736", "milk_can"],
|
656 |
+
"654": ["n03769881", "minibus"],
|
657 |
+
"655": ["n03770439", "miniskirt"],
|
658 |
+
"656": ["n03770679", "minivan"],
|
659 |
+
"657": ["n03773504", "missile"],
|
660 |
+
"658": ["n03775071", "mitten"],
|
661 |
+
"659": ["n03775546", "mixing_bowl"],
|
662 |
+
"660": ["n03776460", "mobile_home"],
|
663 |
+
"661": ["n03777568", "Model_T"],
|
664 |
+
"662": ["n03777754", "modem"],
|
665 |
+
"663": ["n03781244", "monastery"],
|
666 |
+
"664": ["n03782006", "monitor"],
|
667 |
+
"665": ["n03785016", "moped"],
|
668 |
+
"666": ["n03786901", "mortar"],
|
669 |
+
"667": ["n03787032", "mortarboard"],
|
670 |
+
"668": ["n03788195", "mosque"],
|
671 |
+
"669": ["n03788365", "mosquito_net"],
|
672 |
+
"670": ["n03791053", "motor_scooter"],
|
673 |
+
"671": ["n03792782", "mountain_bike"],
|
674 |
+
"672": ["n03792972", "mountain_tent"],
|
675 |
+
"673": ["n03793489", "mouse"],
|
676 |
+
"674": ["n03794056", "mousetrap"],
|
677 |
+
"675": ["n03796401", "moving_van"],
|
678 |
+
"676": ["n03803284", "muzzle"],
|
679 |
+
"677": ["n03804744", "nail"],
|
680 |
+
"678": ["n03814639", "neck_brace"],
|
681 |
+
"679": ["n03814906", "necklace"],
|
682 |
+
"680": ["n03825788", "nipple"],
|
683 |
+
"681": ["n03832673", "notebook"],
|
684 |
+
"682": ["n03837869", "obelisk"],
|
685 |
+
"683": ["n03838899", "oboe"],
|
686 |
+
"684": ["n03840681", "ocarina"],
|
687 |
+
"685": ["n03841143", "odometer"],
|
688 |
+
"686": ["n03843555", "oil_filter"],
|
689 |
+
"687": ["n03854065", "organ"],
|
690 |
+
"688": ["n03857828", "oscilloscope"],
|
691 |
+
"689": ["n03866082", "overskirt"],
|
692 |
+
"690": ["n03868242", "oxcart"],
|
693 |
+
"691": ["n03868863", "oxygen_mask"],
|
694 |
+
"692": ["n03871628", "packet"],
|
695 |
+
"693": ["n03873416", "paddle"],
|
696 |
+
"694": ["n03874293", "paddlewheel"],
|
697 |
+
"695": ["n03874599", "padlock"],
|
698 |
+
"696": ["n03876231", "paintbrush"],
|
699 |
+
"697": ["n03877472", "pajama"],
|
700 |
+
"698": ["n03877845", "palace"],
|
701 |
+
"699": ["n03884397", "panpipe"],
|
702 |
+
"700": ["n03887697", "paper_towel"],
|
703 |
+
"701": ["n03888257", "parachute"],
|
704 |
+
"702": ["n03888605", "parallel_bars"],
|
705 |
+
"703": ["n03891251", "park_bench"],
|
706 |
+
"704": ["n03891332", "parking_meter"],
|
707 |
+
"705": ["n03895866", "passenger_car"],
|
708 |
+
"706": ["n03899768", "patio"],
|
709 |
+
"707": ["n03902125", "pay-phone"],
|
710 |
+
"708": ["n03903868", "pedestal"],
|
711 |
+
"709": ["n03908618", "pencil_box"],
|
712 |
+
"710": ["n03908714", "pencil_sharpener"],
|
713 |
+
"711": ["n03916031", "perfume"],
|
714 |
+
"712": ["n03920288", "Petri_dish"],
|
715 |
+
"713": ["n03924679", "photocopier"],
|
716 |
+
"714": ["n03929660", "pick"],
|
717 |
+
"715": ["n03929855", "pickelhaube"],
|
718 |
+
"716": ["n03930313", "picket_fence"],
|
719 |
+
"717": ["n03930630", "pickup"],
|
720 |
+
"718": ["n03933933", "pier"],
|
721 |
+
"719": ["n03935335", "piggy_bank"],
|
722 |
+
"720": ["n03937543", "pill_bottle"],
|
723 |
+
"721": ["n03938244", "pillow"],
|
724 |
+
"722": ["n03942813", "ping-pong_ball"],
|
725 |
+
"723": ["n03944341", "pinwheel"],
|
726 |
+
"724": ["n03947888", "pirate"],
|
727 |
+
"725": ["n03950228", "pitcher"],
|
728 |
+
"726": ["n03954731", "plane"],
|
729 |
+
"727": ["n03956157", "planetarium"],
|
730 |
+
"728": ["n03958227", "plastic_bag"],
|
731 |
+
"729": ["n03961711", "plate_rack"],
|
732 |
+
"730": ["n03967562", "plow"],
|
733 |
+
"731": ["n03970156", "plunger"],
|
734 |
+
"732": ["n03976467", "Polaroid_camera"],
|
735 |
+
"733": ["n03976657", "pole"],
|
736 |
+
"734": ["n03977966", "police_van"],
|
737 |
+
"735": ["n03980874", "poncho"],
|
738 |
+
"736": ["n03982430", "pool_table"],
|
739 |
+
"737": ["n03983396", "pop_bottle"],
|
740 |
+
"738": ["n03991062", "pot"],
|
741 |
+
"739": ["n03992509", "potter's_wheel"],
|
742 |
+
"740": ["n03995372", "power_drill"],
|
743 |
+
"741": ["n03998194", "prayer_rug"],
|
744 |
+
"742": ["n04004767", "printer"],
|
745 |
+
"743": ["n04005630", "prison"],
|
746 |
+
"744": ["n04008634", "projectile"],
|
747 |
+
"745": ["n04009552", "projector"],
|
748 |
+
"746": ["n04019541", "puck"],
|
749 |
+
"747": ["n04023962", "punching_bag"],
|
750 |
+
"748": ["n04026417", "purse"],
|
751 |
+
"749": ["n04033901", "quill"],
|
752 |
+
"750": ["n04033995", "quilt"],
|
753 |
+
"751": ["n04037443", "racer"],
|
754 |
+
"752": ["n04039381", "racket"],
|
755 |
+
"753": ["n04040759", "radiator"],
|
756 |
+
"754": ["n04041544", "radio"],
|
757 |
+
"755": ["n04044716", "radio_telescope"],
|
758 |
+
"756": ["n04049303", "rain_barrel"],
|
759 |
+
"757": ["n04065272", "recreational_vehicle"],
|
760 |
+
"758": ["n04067472", "reel"],
|
761 |
+
"759": ["n04069434", "reflex_camera"],
|
762 |
+
"760": ["n04070727", "refrigerator"],
|
763 |
+
"761": ["n04074963", "remote_control"],
|
764 |
+
"762": ["n04081281", "restaurant"],
|
765 |
+
"763": ["n04086273", "revolver"],
|
766 |
+
"764": ["n04090263", "rifle"],
|
767 |
+
"765": ["n04099969", "rocking_chair"],
|
768 |
+
"766": ["n04111531", "rotisserie"],
|
769 |
+
"767": ["n04116512", "rubber_eraser"],
|
770 |
+
"768": ["n04118538", "rugby_ball"],
|
771 |
+
"769": ["n04118776", "rule"],
|
772 |
+
"770": ["n04120489", "running_shoe"],
|
773 |
+
"771": ["n04125021", "safe"],
|
774 |
+
"772": ["n04127249", "safety_pin"],
|
775 |
+
"773": ["n04131690", "saltshaker"],
|
776 |
+
"774": ["n04133789", "sandal"],
|
777 |
+
"775": ["n04136333", "sarong"],
|
778 |
+
"776": ["n04141076", "sax"],
|
779 |
+
"777": ["n04141327", "scabbard"],
|
780 |
+
"778": ["n04141975", "scale"],
|
781 |
+
"779": ["n04146614", "school_bus"],
|
782 |
+
"780": ["n04147183", "schooner"],
|
783 |
+
"781": ["n04149813", "scoreboard"],
|
784 |
+
"782": ["n04152593", "screen"],
|
785 |
+
"783": ["n04153751", "screw"],
|
786 |
+
"784": ["n04154565", "screwdriver"],
|
787 |
+
"785": ["n04162706", "seat_belt"],
|
788 |
+
"786": ["n04179913", "sewing_machine"],
|
789 |
+
"787": ["n04192698", "shield"],
|
790 |
+
"788": ["n04200800", "shoe_shop"],
|
791 |
+
"789": ["n04201297", "shoji"],
|
792 |
+
"790": ["n04204238", "shopping_basket"],
|
793 |
+
"791": ["n04204347", "shopping_cart"],
|
794 |
+
"792": ["n04208210", "shovel"],
|
795 |
+
"793": ["n04209133", "shower_cap"],
|
796 |
+
"794": ["n04209239", "shower_curtain"],
|
797 |
+
"795": ["n04228054", "ski"],
|
798 |
+
"796": ["n04229816", "ski_mask"],
|
799 |
+
"797": ["n04235860", "sleeping_bag"],
|
800 |
+
"798": ["n04238763", "slide_rule"],
|
801 |
+
"799": ["n04239074", "sliding_door"],
|
802 |
+
"800": ["n04243546", "slot"],
|
803 |
+
"801": ["n04251144", "snorkel"],
|
804 |
+
"802": ["n04252077", "snowmobile"],
|
805 |
+
"803": ["n04252225", "snowplow"],
|
806 |
+
"804": ["n04254120", "soap_dispenser"],
|
807 |
+
"805": ["n04254680", "soccer_ball"],
|
808 |
+
"806": ["n04254777", "sock"],
|
809 |
+
"807": ["n04258138", "solar_dish"],
|
810 |
+
"808": ["n04259630", "sombrero"],
|
811 |
+
"809": ["n04263257", "soup_bowl"],
|
812 |
+
"810": ["n04264628", "space_bar"],
|
813 |
+
"811": ["n04265275", "space_heater"],
|
814 |
+
"812": ["n04266014", "space_shuttle"],
|
815 |
+
"813": ["n04270147", "spatula"],
|
816 |
+
"814": ["n04273569", "speedboat"],
|
817 |
+
"815": ["n04275548", "spider_web"],
|
818 |
+
"816": ["n04277352", "spindle"],
|
819 |
+
"817": ["n04285008", "sports_car"],
|
820 |
+
"818": ["n04286575", "spotlight"],
|
821 |
+
"819": ["n04296562", "stage"],
|
822 |
+
"820": ["n04310018", "steam_locomotive"],
|
823 |
+
"821": ["n04311004", "steel_arch_bridge"],
|
824 |
+
"822": ["n04311174", "steel_drum"],
|
825 |
+
"823": ["n04317175", "stethoscope"],
|
826 |
+
"824": ["n04325704", "stole"],
|
827 |
+
"825": ["n04326547", "stone_wall"],
|
828 |
+
"826": ["n04328186", "stopwatch"],
|
829 |
+
"827": ["n04330267", "stove"],
|
830 |
+
"828": ["n04332243", "strainer"],
|
831 |
+
"829": ["n04335435", "streetcar"],
|
832 |
+
"830": ["n04336792", "stretcher"],
|
833 |
+
"831": ["n04344873", "studio_couch"],
|
834 |
+
"832": ["n04346328", "stupa"],
|
835 |
+
"833": ["n04347754", "submarine"],
|
836 |
+
"834": ["n04350905", "suit"],
|
837 |
+
"835": ["n04355338", "sundial"],
|
838 |
+
"836": ["n04355933", "sunglass"],
|
839 |
+
"837": ["n04356056", "sunglasses"],
|
840 |
+
"838": ["n04357314", "sunscreen"],
|
841 |
+
"839": ["n04366367", "suspension_bridge"],
|
842 |
+
"840": ["n04367480", "swab"],
|
843 |
+
"841": ["n04370456", "sweatshirt"],
|
844 |
+
"842": ["n04371430", "swimming_trunks"],
|
845 |
+
"843": ["n04371774", "swing"],
|
846 |
+
"844": ["n04372370", "switch"],
|
847 |
+
"845": ["n04376876", "syringe"],
|
848 |
+
"846": ["n04380533", "table_lamp"],
|
849 |
+
"847": ["n04389033", "tank"],
|
850 |
+
"848": ["n04392985", "tape_player"],
|
851 |
+
"849": ["n04398044", "teapot"],
|
852 |
+
"850": ["n04399382", "teddy"],
|
853 |
+
"851": ["n04404412", "television"],
|
854 |
+
"852": ["n04409515", "tennis_ball"],
|
855 |
+
"853": ["n04417672", "thatch"],
|
856 |
+
"854": ["n04418357", "theater_curtain"],
|
857 |
+
"855": ["n04423845", "thimble"],
|
858 |
+
"856": ["n04428191", "thresher"],
|
859 |
+
"857": ["n04429376", "throne"],
|
860 |
+
"858": ["n04435653", "tile_roof"],
|
861 |
+
"859": ["n04442312", "toaster"],
|
862 |
+
"860": ["n04443257", "tobacco_shop"],
|
863 |
+
"861": ["n04447861", "toilet_seat"],
|
864 |
+
"862": ["n04456115", "torch"],
|
865 |
+
"863": ["n04458633", "totem_pole"],
|
866 |
+
"864": ["n04461696", "tow_truck"],
|
867 |
+
"865": ["n04462240", "toyshop"],
|
868 |
+
"866": ["n04465501", "tractor"],
|
869 |
+
"867": ["n04467665", "trailer_truck"],
|
870 |
+
"868": ["n04476259", "tray"],
|
871 |
+
"869": ["n04479046", "trench_coat"],
|
872 |
+
"870": ["n04482393", "tricycle"],
|
873 |
+
"871": ["n04483307", "trimaran"],
|
874 |
+
"872": ["n04485082", "tripod"],
|
875 |
+
"873": ["n04486054", "triumphal_arch"],
|
876 |
+
"874": ["n04487081", "trolleybus"],
|
877 |
+
"875": ["n04487394", "trombone"],
|
878 |
+
"876": ["n04493381", "tub"],
|
879 |
+
"877": ["n04501370", "turnstile"],
|
880 |
+
"878": ["n04505470", "typewriter_keyboard"],
|
881 |
+
"879": ["n04507155", "umbrella"],
|
882 |
+
"880": ["n04509417", "unicycle"],
|
883 |
+
"881": ["n04515003", "upright"],
|
884 |
+
"882": ["n04517823", "vacuum"],
|
885 |
+
"883": ["n04522168", "vase"],
|
886 |
+
"884": ["n04523525", "vault"],
|
887 |
+
"885": ["n04525038", "velvet"],
|
888 |
+
"886": ["n04525305", "vending_machine"],
|
889 |
+
"887": ["n04532106", "vestment"],
|
890 |
+
"888": ["n04532670", "viaduct"],
|
891 |
+
"889": ["n04536866", "violin"],
|
892 |
+
"890": ["n04540053", "volleyball"],
|
893 |
+
"891": ["n04542943", "waffle_iron"],
|
894 |
+
"892": ["n04548280", "wall_clock"],
|
895 |
+
"893": ["n04548362", "wallet"],
|
896 |
+
"894": ["n04550184", "wardrobe"],
|
897 |
+
"895": ["n04552348", "warplane"],
|
898 |
+
"896": ["n04553703", "washbasin"],
|
899 |
+
"897": ["n04554684", "washer"],
|
900 |
+
"898": ["n04557648", "water_bottle"],
|
901 |
+
"899": ["n04560804", "water_jug"],
|
902 |
+
"900": ["n04562935", "water_tower"],
|
903 |
+
"901": ["n04579145", "whiskey_jug"],
|
904 |
+
"902": ["n04579432", "whistle"],
|
905 |
+
"903": ["n04584207", "wig"],
|
906 |
+
"904": ["n04589890", "window_screen"],
|
907 |
+
"905": ["n04590129", "window_shade"],
|
908 |
+
"906": ["n04591157", "Windsor_tie"],
|
909 |
+
"907": ["n04591713", "wine_bottle"],
|
910 |
+
"908": ["n04592741", "wing"],
|
911 |
+
"909": ["n04596742", "wok"],
|
912 |
+
"910": ["n04597913", "wooden_spoon"],
|
913 |
+
"911": ["n04599235", "wool"],
|
914 |
+
"912": ["n04604644", "worm_fence"],
|
915 |
+
"913": ["n04606251", "wreck"],
|
916 |
+
"914": ["n04612504", "yawl"],
|
917 |
+
"915": ["n04613696", "yurt"],
|
918 |
+
"916": ["n06359193", "web_site"],
|
919 |
+
"917": ["n06596364", "comic_book"],
|
920 |
+
"918": ["n06785654", "crossword_puzzle"],
|
921 |
+
"919": ["n06794110", "street_sign"],
|
922 |
+
"920": ["n06874185", "traffic_light"],
|
923 |
+
"921": ["n07248320", "book_jacket"],
|
924 |
+
"922": ["n07565083", "menu"],
|
925 |
+
"923": ["n07579787", "plate"],
|
926 |
+
"924": ["n07583066", "guacamole"],
|
927 |
+
"925": ["n07584110", "consomme"],
|
928 |
+
"926": ["n07590611", "hot_pot"],
|
929 |
+
"927": ["n07613480", "trifle"],
|
930 |
+
"928": ["n07614500", "ice_cream"],
|
931 |
+
"929": ["n07615774", "ice_lolly"],
|
932 |
+
"930": ["n07684084", "French_loaf"],
|
933 |
+
"931": ["n07693725", "bagel"],
|
934 |
+
"932": ["n07695742", "pretzel"],
|
935 |
+
"933": ["n07697313", "cheeseburger"],
|
936 |
+
"934": ["n07697537", "hotdog"],
|
937 |
+
"935": ["n07711569", "mashed_potato"],
|
938 |
+
"936": ["n07714571", "head_cabbage"],
|
939 |
+
"937": ["n07714990", "broccoli"],
|
940 |
+
"938": ["n07715103", "cauliflower"],
|
941 |
+
"939": ["n07716358", "zucchini"],
|
942 |
+
"940": ["n07716906", "spaghetti_squash"],
|
943 |
+
"941": ["n07717410", "acorn_squash"],
|
944 |
+
"942": ["n07717556", "butternut_squash"],
|
945 |
+
"943": ["n07718472", "cucumber"],
|
946 |
+
"944": ["n07718747", "artichoke"],
|
947 |
+
"945": ["n07720875", "bell_pepper"],
|
948 |
+
"946": ["n07730033", "cardoon"],
|
949 |
+
"947": ["n07734744", "mushroom"],
|
950 |
+
"948": ["n07742313", "Granny_Smith"],
|
951 |
+
"949": ["n07745940", "strawberry"],
|
952 |
+
"950": ["n07747607", "orange"],
|
953 |
+
"951": ["n07749582", "lemon"],
|
954 |
+
"952": ["n07753113", "fig"],
|
955 |
+
"953": ["n07753275", "pineapple"],
|
956 |
+
"954": ["n07753592", "banana"],
|
957 |
+
"955": ["n07754684", "jackfruit"],
|
958 |
+
"956": ["n07760859", "custard_apple"],
|
959 |
+
"957": ["n07768694", "pomegranate"],
|
960 |
+
"958": ["n07802026", "hay"],
|
961 |
+
"959": ["n07831146", "carbonara"],
|
962 |
+
"960": ["n07836838", "chocolate_sauce"],
|
963 |
+
"961": ["n07860988", "dough"],
|
964 |
+
"962": ["n07871810", "meat_loaf"],
|
965 |
+
"963": ["n07873807", "pizza"],
|
966 |
+
"964": ["n07875152", "potpie"],
|
967 |
+
"965": ["n07880968", "burrito"],
|
968 |
+
"966": ["n07892512", "red_wine"],
|
969 |
+
"967": ["n07920052", "espresso"],
|
970 |
+
"968": ["n07930864", "cup"],
|
971 |
+
"969": ["n07932039", "eggnog"],
|
972 |
+
"970": ["n09193705", "alp"],
|
973 |
+
"971": ["n09229709", "bubble"],
|
974 |
+
"972": ["n09246464", "cliff"],
|
975 |
+
"973": ["n09256479", "coral_reef"],
|
976 |
+
"974": ["n09288635", "geyser"],
|
977 |
+
"975": ["n09332890", "lakeside"],
|
978 |
+
"976": ["n09399592", "promontory"],
|
979 |
+
"977": ["n09421951", "sandbar"],
|
980 |
+
"978": ["n09428293", "seashore"],
|
981 |
+
"979": ["n09468604", "valley"],
|
982 |
+
"980": ["n09472597", "volcano"],
|
983 |
+
"981": ["n09835506", "ballplayer"],
|
984 |
+
"982": ["n10148035", "groom"],
|
985 |
+
"983": ["n10565667", "scuba_diver"],
|
986 |
+
"984": ["n11879895", "rapeseed"],
|
987 |
+
"985": ["n11939491", "daisy"],
|
988 |
+
"986": ["n12057211", "yellow_lady's_slipper"],
|
989 |
+
"987": ["n12144580", "corn"],
|
990 |
+
"988": ["n12267677", "acorn"],
|
991 |
+
"989": ["n12620546", "hip"],
|
992 |
+
"990": ["n12768682", "buckeye"],
|
993 |
+
"991": ["n12985857", "coral_fungus"],
|
994 |
+
"992": ["n12998815", "agaric"],
|
995 |
+
"993": ["n13037406", "gyromitra"],
|
996 |
+
"994": ["n13040303", "stinkhorn"],
|
997 |
+
"995": ["n13044778", "earthstar"],
|
998 |
+
"996": ["n13052670", "hen-of-the-woods"],
|
999 |
+
"997": ["n13054560", "bolete"],
|
1000 |
+
"998": ["n13133613", "ear"],
|
1001 |
+
"999": ["n15075141", "toilet_tissue"]
|
1002 |
+
}
|
images/cat.png
ADDED
images/dog.png
ADDED
images/panda.png
ADDED
install.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pip install -e causal-conv1d
|
2 |
+
pip install -e mamba
|
kinetics_class_index.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
kinetics_classnames = {
|
2 |
+
"0": "riding a bike",
|
3 |
+
"1": "marching",
|
4 |
+
"2": "dodgeball",
|
5 |
+
"3": "playing cymbals",
|
6 |
+
"4": "checking tires",
|
7 |
+
"5": "roller skating",
|
8 |
+
"6": "tasting beer",
|
9 |
+
"7": "clapping",
|
10 |
+
"8": "drawing",
|
11 |
+
"9": "juggling fire",
|
12 |
+
"10": "bobsledding",
|
13 |
+
"11": "petting animal (not cat)",
|
14 |
+
"12": "spray painting",
|
15 |
+
"13": "training dog",
|
16 |
+
"14": "eating watermelon",
|
17 |
+
"15": "building cabinet",
|
18 |
+
"16": "applauding",
|
19 |
+
"17": "playing harp",
|
20 |
+
"18": "balloon blowing",
|
21 |
+
"19": "sled dog racing",
|
22 |
+
"20": "wrestling",
|
23 |
+
"21": "pole vault",
|
24 |
+
"22": "hurling (sport)",
|
25 |
+
"23": "riding scooter",
|
26 |
+
"24": "shearing sheep",
|
27 |
+
"25": "sweeping floor",
|
28 |
+
"26": "eating carrots",
|
29 |
+
"27": "skateboarding",
|
30 |
+
"28": "dunking basketball",
|
31 |
+
"29": "disc golfing",
|
32 |
+
"30": "eating spaghetti",
|
33 |
+
"31": "playing flute",
|
34 |
+
"32": "riding mechanical bull",
|
35 |
+
"33": "making sushi",
|
36 |
+
"34": "trapezing",
|
37 |
+
"35": "picking fruit",
|
38 |
+
"36": "stretching leg",
|
39 |
+
"37": "playing ukulele",
|
40 |
+
"38": "tying tie",
|
41 |
+
"39": "skydiving",
|
42 |
+
"40": "playing cello",
|
43 |
+
"41": "jumping into pool",
|
44 |
+
"42": "shooting goal (soccer)",
|
45 |
+
"43": "trimming trees",
|
46 |
+
"44": "bookbinding",
|
47 |
+
"45": "ski jumping",
|
48 |
+
"46": "walking the dog",
|
49 |
+
"47": "riding unicycle",
|
50 |
+
"48": "shaving head",
|
51 |
+
"49": "hopscotch",
|
52 |
+
"50": "playing piano",
|
53 |
+
"51": "parasailing",
|
54 |
+
"52": "bartending",
|
55 |
+
"53": "kicking field goal",
|
56 |
+
"54": "finger snapping",
|
57 |
+
"55": "dining",
|
58 |
+
"56": "yawning",
|
59 |
+
"57": "peeling potatoes",
|
60 |
+
"58": "canoeing or kayaking",
|
61 |
+
"59": "front raises",
|
62 |
+
"60": "laughing",
|
63 |
+
"61": "dancing macarena",
|
64 |
+
"62": "digging",
|
65 |
+
"63": "reading newspaper",
|
66 |
+
"64": "hitting baseball",
|
67 |
+
"65": "clay pottery making",
|
68 |
+
"66": "exercising with an exercise ball",
|
69 |
+
"67": "playing saxophone",
|
70 |
+
"68": "shooting basketball",
|
71 |
+
"69": "washing hair",
|
72 |
+
"70": "lunge",
|
73 |
+
"71": "brushing hair",
|
74 |
+
"72": "curling hair",
|
75 |
+
"73": "kitesurfing",
|
76 |
+
"74": "tapping guitar",
|
77 |
+
"75": "bending back",
|
78 |
+
"76": "skipping rope",
|
79 |
+
"77": "situp",
|
80 |
+
"78": "folding paper",
|
81 |
+
"79": "cracking neck",
|
82 |
+
"80": "assembling computer",
|
83 |
+
"81": "cleaning gutters",
|
84 |
+
"82": "blowing out candles",
|
85 |
+
"83": "shaking hands",
|
86 |
+
"84": "dancing gangnam style",
|
87 |
+
"85": "windsurfing",
|
88 |
+
"86": "tap dancing",
|
89 |
+
"87": "skiing (not slalom or crosscountry)",
|
90 |
+
"88": "bandaging",
|
91 |
+
"89": "push up",
|
92 |
+
"90": "doing nails",
|
93 |
+
"91": "punching person (boxing)",
|
94 |
+
"92": "bouncing on trampoline",
|
95 |
+
"93": "scrambling eggs",
|
96 |
+
"94": "singing",
|
97 |
+
"95": "cleaning floor",
|
98 |
+
"96": "krumping",
|
99 |
+
"97": "drumming fingers",
|
100 |
+
"98": "snowmobiling",
|
101 |
+
"99": "gymnastics tumbling",
|
102 |
+
"100": "headbanging",
|
103 |
+
"101": "catching or throwing frisbee",
|
104 |
+
"102": "riding elephant",
|
105 |
+
"103": "bee keeping",
|
106 |
+
"104": "feeding birds",
|
107 |
+
"105": "snatch weight lifting",
|
108 |
+
"106": "mowing lawn",
|
109 |
+
"107": "fixing hair",
|
110 |
+
"108": "playing trumpet",
|
111 |
+
"109": "flying kite",
|
112 |
+
"110": "crossing river",
|
113 |
+
"111": "swinging legs",
|
114 |
+
"112": "sanding floor",
|
115 |
+
"113": "belly dancing",
|
116 |
+
"114": "sneezing",
|
117 |
+
"115": "clean and jerk",
|
118 |
+
"116": "side kick",
|
119 |
+
"117": "filling eyebrows",
|
120 |
+
"118": "shuffling cards",
|
121 |
+
"119": "recording music",
|
122 |
+
"120": "cartwheeling",
|
123 |
+
"121": "feeding fish",
|
124 |
+
"122": "folding clothes",
|
125 |
+
"123": "water skiing",
|
126 |
+
"124": "tobogganing",
|
127 |
+
"125": "blowing leaves",
|
128 |
+
"126": "smoking",
|
129 |
+
"127": "unboxing",
|
130 |
+
"128": "tai chi",
|
131 |
+
"129": "waxing legs",
|
132 |
+
"130": "riding camel",
|
133 |
+
"131": "slapping",
|
134 |
+
"132": "tossing salad",
|
135 |
+
"133": "capoeira",
|
136 |
+
"134": "playing cards",
|
137 |
+
"135": "playing organ",
|
138 |
+
"136": "playing violin",
|
139 |
+
"137": "playing drums",
|
140 |
+
"138": "tapping pen",
|
141 |
+
"139": "vault",
|
142 |
+
"140": "shoveling snow",
|
143 |
+
"141": "playing tennis",
|
144 |
+
"142": "getting a tattoo",
|
145 |
+
"143": "making a sandwich",
|
146 |
+
"144": "making tea",
|
147 |
+
"145": "grinding meat",
|
148 |
+
"146": "squat",
|
149 |
+
"147": "eating doughnuts",
|
150 |
+
"148": "ice fishing",
|
151 |
+
"149": "snowkiting",
|
152 |
+
"150": "kicking soccer ball",
|
153 |
+
"151": "playing controller",
|
154 |
+
"152": "giving or receiving award",
|
155 |
+
"153": "welding",
|
156 |
+
"154": "throwing discus",
|
157 |
+
"155": "throwing axe",
|
158 |
+
"156": "ripping paper",
|
159 |
+
"157": "swimming butterfly stroke",
|
160 |
+
"158": "air drumming",
|
161 |
+
"159": "blowing nose",
|
162 |
+
"160": "hockey stop",
|
163 |
+
"161": "taking a shower",
|
164 |
+
"162": "bench pressing",
|
165 |
+
"163": "planting trees",
|
166 |
+
"164": "pumping fist",
|
167 |
+
"165": "climbing tree",
|
168 |
+
"166": "tickling",
|
169 |
+
"167": "high kick",
|
170 |
+
"168": "waiting in line",
|
171 |
+
"169": "slacklining",
|
172 |
+
"170": "tango dancing",
|
173 |
+
"171": "hurdling",
|
174 |
+
"172": "carrying baby",
|
175 |
+
"173": "celebrating",
|
176 |
+
"174": "sharpening knives",
|
177 |
+
"175": "passing American football (in game)",
|
178 |
+
"176": "headbutting",
|
179 |
+
"177": "playing recorder",
|
180 |
+
"178": "brush painting",
|
181 |
+
"179": "garbage collecting",
|
182 |
+
"180": "robot dancing",
|
183 |
+
"181": "shredding paper",
|
184 |
+
"182": "pumping gas",
|
185 |
+
"183": "rock climbing",
|
186 |
+
"184": "hula hooping",
|
187 |
+
"185": "braiding hair",
|
188 |
+
"186": "opening present",
|
189 |
+
"187": "texting",
|
190 |
+
"188": "decorating the christmas tree",
|
191 |
+
"189": "answering questions",
|
192 |
+
"190": "playing keyboard",
|
193 |
+
"191": "writing",
|
194 |
+
"192": "bungee jumping",
|
195 |
+
"193": "sniffing",
|
196 |
+
"194": "eating burger",
|
197 |
+
"195": "playing accordion",
|
198 |
+
"196": "making pizza",
|
199 |
+
"197": "playing volleyball",
|
200 |
+
"198": "tasting food",
|
201 |
+
"199": "pushing cart",
|
202 |
+
"200": "spinning poi",
|
203 |
+
"201": "cleaning windows",
|
204 |
+
"202": "arm wrestling",
|
205 |
+
"203": "changing oil",
|
206 |
+
"204": "swimming breast stroke",
|
207 |
+
"205": "tossing coin",
|
208 |
+
"206": "deadlifting",
|
209 |
+
"207": "hoverboarding",
|
210 |
+
"208": "cutting watermelon",
|
211 |
+
"209": "cheerleading",
|
212 |
+
"210": "snorkeling",
|
213 |
+
"211": "washing hands",
|
214 |
+
"212": "eating cake",
|
215 |
+
"213": "pull ups",
|
216 |
+
"214": "surfing water",
|
217 |
+
"215": "eating hotdog",
|
218 |
+
"216": "holding snake",
|
219 |
+
"217": "playing harmonica",
|
220 |
+
"218": "ironing",
|
221 |
+
"219": "cutting nails",
|
222 |
+
"220": "golf chipping",
|
223 |
+
"221": "shot put",
|
224 |
+
"222": "hugging",
|
225 |
+
"223": "playing clarinet",
|
226 |
+
"224": "faceplanting",
|
227 |
+
"225": "trimming or shaving beard",
|
228 |
+
"226": "drinking shots",
|
229 |
+
"227": "riding mountain bike",
|
230 |
+
"228": "tying bow tie",
|
231 |
+
"229": "swinging on something",
|
232 |
+
"230": "skiing crosscountry",
|
233 |
+
"231": "unloading truck",
|
234 |
+
"232": "cleaning pool",
|
235 |
+
"233": "jogging",
|
236 |
+
"234": "ice climbing",
|
237 |
+
"235": "mopping floor",
|
238 |
+
"236": "making bed",
|
239 |
+
"237": "diving cliff",
|
240 |
+
"238": "washing dishes",
|
241 |
+
"239": "grooming dog",
|
242 |
+
"240": "weaving basket",
|
243 |
+
"241": "frying vegetables",
|
244 |
+
"242": "stomping grapes",
|
245 |
+
"243": "moving furniture",
|
246 |
+
"244": "cooking sausages",
|
247 |
+
"245": "doing laundry",
|
248 |
+
"246": "dying hair",
|
249 |
+
"247": "knitting",
|
250 |
+
"248": "reading book",
|
251 |
+
"249": "baby waking up",
|
252 |
+
"250": "punching bag",
|
253 |
+
"251": "surfing crowd",
|
254 |
+
"252": "cooking chicken",
|
255 |
+
"253": "pushing car",
|
256 |
+
"254": "springboard diving",
|
257 |
+
"255": "swing dancing",
|
258 |
+
"256": "massaging legs",
|
259 |
+
"257": "beatboxing",
|
260 |
+
"258": "breading or breadcrumbing",
|
261 |
+
"259": "somersaulting",
|
262 |
+
"260": "brushing teeth",
|
263 |
+
"261": "stretching arm",
|
264 |
+
"262": "juggling balls",
|
265 |
+
"263": "massaging person's head",
|
266 |
+
"264": "eating ice cream",
|
267 |
+
"265": "extinguishing fire",
|
268 |
+
"266": "hammer throw",
|
269 |
+
"267": "whistling",
|
270 |
+
"268": "crawling baby",
|
271 |
+
"269": "using remote controller (not gaming)",
|
272 |
+
"270": "playing cricket",
|
273 |
+
"271": "opening bottle",
|
274 |
+
"272": "playing xylophone",
|
275 |
+
"273": "motorcycling",
|
276 |
+
"274": "driving car",
|
277 |
+
"275": "exercising arm",
|
278 |
+
"276": "passing American football (not in game)",
|
279 |
+
"277": "playing kickball",
|
280 |
+
"278": "sticking tongue out",
|
281 |
+
"279": "flipping pancake",
|
282 |
+
"280": "catching fish",
|
283 |
+
"281": "eating chips",
|
284 |
+
"282": "shaking head",
|
285 |
+
"283": "sword fighting",
|
286 |
+
"284": "playing poker",
|
287 |
+
"285": "cooking on campfire",
|
288 |
+
"286": "doing aerobics",
|
289 |
+
"287": "paragliding",
|
290 |
+
"288": "using segway",
|
291 |
+
"289": "folding napkins",
|
292 |
+
"290": "playing bagpipes",
|
293 |
+
"291": "gargling",
|
294 |
+
"292": "skiing slalom",
|
295 |
+
"293": "strumming guitar",
|
296 |
+
"294": "javelin throw",
|
297 |
+
"295": "waxing back",
|
298 |
+
"296": "riding or walking with horse",
|
299 |
+
"297": "plastering",
|
300 |
+
"298": "long jump",
|
301 |
+
"299": "parkour",
|
302 |
+
"300": "wrapping present",
|
303 |
+
"301": "egg hunting",
|
304 |
+
"302": "archery",
|
305 |
+
"303": "cleaning toilet",
|
306 |
+
"304": "swimming backstroke",
|
307 |
+
"305": "snowboarding",
|
308 |
+
"306": "catching or throwing baseball",
|
309 |
+
"307": "massaging back",
|
310 |
+
"308": "blowing glass",
|
311 |
+
"309": "playing guitar",
|
312 |
+
"310": "playing chess",
|
313 |
+
"311": "golf driving",
|
314 |
+
"312": "presenting weather forecast",
|
315 |
+
"313": "rock scissors paper",
|
316 |
+
"314": "high jump",
|
317 |
+
"315": "baking cookies",
|
318 |
+
"316": "using computer",
|
319 |
+
"317": "washing feet",
|
320 |
+
"318": "arranging flowers",
|
321 |
+
"319": "playing bass guitar",
|
322 |
+
"320": "spraying",
|
323 |
+
"321": "cutting pineapple",
|
324 |
+
"322": "waxing chest",
|
325 |
+
"323": "auctioning",
|
326 |
+
"324": "jetskiing",
|
327 |
+
"325": "drinking",
|
328 |
+
"326": "busking",
|
329 |
+
"327": "playing monopoly",
|
330 |
+
"328": "salsa dancing",
|
331 |
+
"329": "waxing eyebrows",
|
332 |
+
"330": "watering plants",
|
333 |
+
"331": "zumba",
|
334 |
+
"332": "chopping wood",
|
335 |
+
"333": "pushing wheelchair",
|
336 |
+
"334": "carving pumpkin",
|
337 |
+
"335": "building shed",
|
338 |
+
"336": "making jewelry",
|
339 |
+
"337": "catching or throwing softball",
|
340 |
+
"338": "bending metal",
|
341 |
+
"339": "ice skating",
|
342 |
+
"340": "dancing charleston",
|
343 |
+
"341": "abseiling",
|
344 |
+
"342": "climbing a rope",
|
345 |
+
"343": "crying",
|
346 |
+
"344": "cleaning shoes",
|
347 |
+
"345": "dancing ballet",
|
348 |
+
"346": "driving tractor",
|
349 |
+
"347": "triple jump",
|
350 |
+
"348": "throwing ball",
|
351 |
+
"349": "getting a haircut",
|
352 |
+
"350": "running on treadmill",
|
353 |
+
"351": "climbing ladder",
|
354 |
+
"352": "blasting sand",
|
355 |
+
"353": "playing trombone",
|
356 |
+
"354": "drop kicking",
|
357 |
+
"355": "country line dancing",
|
358 |
+
"356": "changing wheel",
|
359 |
+
"357": "feeding goats",
|
360 |
+
"358": "tying knot (not on a tie)",
|
361 |
+
"359": "setting table",
|
362 |
+
"360": "shaving legs",
|
363 |
+
"361": "kissing",
|
364 |
+
"362": "riding mule",
|
365 |
+
"363": "counting money",
|
366 |
+
"364": "laying bricks",
|
367 |
+
"365": "barbequing",
|
368 |
+
"366": "news anchoring",
|
369 |
+
"367": "smoking hookah",
|
370 |
+
"368": "cooking egg",
|
371 |
+
"369": "peeling apples",
|
372 |
+
"370": "yoga",
|
373 |
+
"371": "sharpening pencil",
|
374 |
+
"372": "dribbling basketball",
|
375 |
+
"373": "petting cat",
|
376 |
+
"374": "playing ice hockey",
|
377 |
+
"375": "milking cow",
|
378 |
+
"376": "shining shoes",
|
379 |
+
"377": "juggling soccer ball",
|
380 |
+
"378": "scuba diving",
|
381 |
+
"379": "playing squash or racquetball",
|
382 |
+
"380": "drinking beer",
|
383 |
+
"381": "sign language interpreting",
|
384 |
+
"382": "playing basketball",
|
385 |
+
"383": "breakdancing",
|
386 |
+
"384": "testifying",
|
387 |
+
"385": "making snowman",
|
388 |
+
"386": "golf putting",
|
389 |
+
"387": "playing didgeridoo",
|
390 |
+
"388": "biking through snow",
|
391 |
+
"389": "sailing",
|
392 |
+
"390": "jumpstyle dancing",
|
393 |
+
"391": "water sliding",
|
394 |
+
"392": "grooming horse",
|
395 |
+
"393": "massaging feet",
|
396 |
+
"394": "playing paintball",
|
397 |
+
"395": "making a cake",
|
398 |
+
"396": "bowling",
|
399 |
+
"397": "contact juggling",
|
400 |
+
"398": "applying cream",
|
401 |
+
"399": "playing badminton"
|
402 |
+
}
|
mamba/.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "3rdparty/lm-evaluation-harness"]
|
2 |
+
path = 3rdparty/lm-evaluation-harness
|
3 |
+
url = https://github.com/EleutherAI/lm-evaluation-harness/
|
mamba/AUTHORS
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Tri Dao, tri@tridao.me
|
2 |
+
Albert Gu, agu@andrew.cmu.edu
|
mamba/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2023 Tri Dao, Albert Gu
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
mamba/README.md
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Mamba
|
2 |
+
|
3 |
+
![Mamba](assets/selection.png "Selective State Space")
|
4 |
+
> **Mamba: Linear-Time Sequence Modeling with Selective State Spaces**\
|
5 |
+
> Albert Gu*, Tri Dao*\
|
6 |
+
> Paper: https://arxiv.org/abs/2312.00752
|
7 |
+
|
8 |
+
## About
|
9 |
+
|
10 |
+
Mamba is a new state space model architecture showing promising performance on information-dense data such as language modeling, where previous subquadratic models fall short of Transformers.
|
11 |
+
It is based on the line of progress on [structured state space models](https://github.com/state-spaces/s4),
|
12 |
+
with an efficient hardware-aware design and implementation in the spirit of [FlashAttention](https://github.com/Dao-AILab/flash-attention).
|
13 |
+
|
14 |
+
## Installation
|
15 |
+
|
16 |
+
- `pip install causal-conv1d`: an efficient implementation of a simple causal Conv1d layer used inside the Mamba block.
|
17 |
+
- `pip install mamba-ssm`: the core Mamba package.
|
18 |
+
|
19 |
+
It can also be built from source with `pip install .` from this repository.
|
20 |
+
|
21 |
+
If `pip` complains about PyTorch versions, try passing `--no-build-isolation` to `pip`.
|
22 |
+
|
23 |
+
Other requirements:
|
24 |
+
- Linux
|
25 |
+
- NVIDIA GPU
|
26 |
+
- PyTorch 1.12+
|
27 |
+
- CUDA 11.6+
|
28 |
+
|
29 |
+
## Usage
|
30 |
+
|
31 |
+
We expose several levels of interface with the Mamba model.
|
32 |
+
|
33 |
+
### Selective SSM
|
34 |
+
|
35 |
+
Mamba is based on a selective SSM layer, which is the focus of the paper (Section 3; Algorithm 2).
|
36 |
+
|
37 |
+
Source: [ops/selective_scan_interface.py](mamba_ssm/ops/selective_scan_interface.py).
|
38 |
+
|
39 |
+
### Mamba Block
|
40 |
+
|
41 |
+
The main module of this repository is the Mamba architecture block wrapping the selective SSM.
|
42 |
+
|
43 |
+
Source: [modules/mamba_simple.py](mamba_ssm/modules/mamba_simple.py).
|
44 |
+
|
45 |
+
Usage:
|
46 |
+
```
|
47 |
+
from mamba_ssm import Mamba
|
48 |
+
|
49 |
+
batch, length, dim = 2, 64, 16
|
50 |
+
x = torch.randn(batch, length, dim).to("cuda")
|
51 |
+
model = Mamba(
|
52 |
+
# This module uses roughly 3 * expand * d_model^2 parameters
|
53 |
+
d_model=dim, # Model dimension d_model
|
54 |
+
d_state=16, # SSM state expansion factor
|
55 |
+
d_conv=4, # Local convolution width
|
56 |
+
expand=2, # Block expansion factor
|
57 |
+
).to("cuda")
|
58 |
+
y = model(x)
|
59 |
+
assert y.shape == x.shape
|
60 |
+
```
|
61 |
+
|
62 |
+
### Mamba Language Model
|
63 |
+
|
64 |
+
Finally, we provide an example of a complete language model: a deep sequence model backbone (with repeating Mamba blocks) + language model head.
|
65 |
+
|
66 |
+
Source: [models/mixer_seq_simple.py](mamba_ssm/models/mixer_seq_simple.py).
|
67 |
+
|
68 |
+
This is an example of how to integrate Mamba into an end-to-end neural network.
|
69 |
+
This example is used in the generation scripts below.
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
## Pretrained Models
|
74 |
+
|
75 |
+
Pretrained models are uploaded to
|
76 |
+
[HuggingFace](https://huggingface.co/state-spaces): `mamba-130m`, `mamba-370m`,
|
77 |
+
`mamba-790m`, `mamba-1.4b`, `mamba-2.8b`.
|
78 |
+
|
79 |
+
The models will be autodownloaded by the generation script below.
|
80 |
+
|
81 |
+
These models were trained on the [Pile](https://huggingface.co/datasets/EleutherAI/pile), and follow the standard model dimensions described by GPT-3 and followed by many open source models:
|
82 |
+
|
83 |
+
| Parameters | Layers | Model dim. |
|
84 |
+
|------------|--------|------------|
|
85 |
+
| 130M | 12 | 768 |
|
86 |
+
| 370M | 24 | 1024 |
|
87 |
+
| 790M | 24 | 1536 |
|
88 |
+
| 1.4B | 24 | 2048 |
|
89 |
+
| 2.8B | 32 | 2560 |
|
90 |
+
|
91 |
+
(The layer count of Mamba should be doubled, as two Mamba blocks are needed for each "layer" (MHA block + MLP block) of a Transformer.)
|
92 |
+
|
93 |
+
Note: these are base models trained only for 300B tokens, without any form of downstream modification (instruction tuning, etc.).
|
94 |
+
Performance is expected to be comparable or better than other architectures trained on similar data, but not to match larger or fine-tuned models.
|
95 |
+
|
96 |
+
|
97 |
+
## Evaluations
|
98 |
+
|
99 |
+
To run zero-shot evaluations of models (corresponding to Table 3 of the paper),
|
100 |
+
we use the
|
101 |
+
[lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/big-refactor)
|
102 |
+
library.
|
103 |
+
|
104 |
+
1. Pull the `lm-evaluation-harness` repo by `git submodule update --init
|
105 |
+
--recursive`. We use the `big-refactor` branch.
|
106 |
+
2. Install `lm-evaluation-harness`: `pip install -e 3rdparty/lm-evaluation-harness`
|
107 |
+
3. Run evaluation with (more documentation at the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/big-refactor) repo):
|
108 |
+
```
|
109 |
+
python evals/lm_harness_eval.py --model mamba --model_args pretrained=state-spaces/mamba-130m --tasks lambada_openai,hellaswag,piqa,arc_easy,arc_challenge,winogrande --device cuda --batch_size 64
|
110 |
+
python evals/lm_harness_eval.py --model hf --model_args pretrained=EleutherAI/pythia-160m --tasks lambada_openai,hellaswag,piqa,arc_easy,arc_challenge,winogrande --device cuda --batch_size 64
|
111 |
+
```
|
112 |
+
|
113 |
+
Note that the result of each task might differ from reported values by 0.1-0.3 due to noise in the evaluation process.
|
114 |
+
|
115 |
+
## Inference
|
116 |
+
|
117 |
+
The script [benchmarks/benchmark_generation_mamba_simple.py](benchmarks/benchmark_generation_mamba_simple.py)
|
118 |
+
1. autoloads a model from the HuggingFace Hub,
|
119 |
+
2. generates completions of a user-specified prompt,
|
120 |
+
3. benchmarks the inference speed of this generation.
|
121 |
+
|
122 |
+
Other configurable options include the top-p (nucleus sampling) probability, and the softmax temperature.
|
123 |
+
|
124 |
+
### Examples
|
125 |
+
|
126 |
+
To test generation latency (e.g. batch size = 1) with different sampling strategies:
|
127 |
+
|
128 |
+
```
|
129 |
+
python benchmarks/benchmark_generation_mamba_simple.py --model-name "state-spaces/mamba-2.8b" --prompt "My cat wrote all this CUDA code for a new language model and" --topp 0.9 --temperature 0.5
|
130 |
+
python benchmarks/benchmark_generation_mamba_simple.py --model-name "EleutherAI/pythia-2.8b" --prompt "My cat wrote all this CUDA code for a new language model and" --topp 0.9 --temperature 0.5
|
131 |
+
```
|
132 |
+
|
133 |
+
To test generation throughput with random prompts (e.g. large batch size):
|
134 |
+
```
|
135 |
+
python benchmarks/benchmark_generation_mamba_simple.py --model-name "state-spaces/mamba-2.8b" --batch 128
|
136 |
+
python benchmarks/benchmark_generation_mamba_simple.py --model-name "EleutherAI/pythia-2.8b" --batch 128
|
137 |
+
```
|
138 |
+
|
139 |
+
## Citation
|
140 |
+
|
141 |
+
If you use this codebase, or otherwise found our work valuable, please cite Mamba:
|
142 |
+
```
|
143 |
+
@article{mamba,
|
144 |
+
title={Mamba: Linear-Time Sequence Modeling with Selective State Spaces},
|
145 |
+
author={Gu, Albert and Dao, Tri},
|
146 |
+
journal={arXiv preprint arXiv:2312.00752},
|
147 |
+
year={2023}
|
148 |
+
}
|
149 |
+
```
|
mamba/assets/selection.png
ADDED
mamba/benchmarks/benchmark_generation_mamba_simple.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Tri Dao, Albert Gu.
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import time
|
5 |
+
import json
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from einops import rearrange
|
11 |
+
|
12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
13 |
+
|
14 |
+
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
|
15 |
+
|
16 |
+
|
17 |
+
parser = argparse.ArgumentParser(description="Generation benchmarking")
|
18 |
+
parser.add_argument("--model-name", type=str, default="state-spaces/mamba-130m")
|
19 |
+
parser.add_argument("--prompt", type=str, default=None)
|
20 |
+
parser.add_argument("--promptlen", type=int, default=100)
|
21 |
+
parser.add_argument("--genlen", type=int, default=100)
|
22 |
+
parser.add_argument("--temperature", type=float, default=1.0)
|
23 |
+
parser.add_argument("--topk", type=int, default=1)
|
24 |
+
parser.add_argument("--topp", type=float, default=1.0)
|
25 |
+
parser.add_argument("--batch", type=int, default=1)
|
26 |
+
args = parser.parse_args()
|
27 |
+
|
28 |
+
repeats = 3
|
29 |
+
device = "cuda"
|
30 |
+
dtype = torch.float16
|
31 |
+
|
32 |
+
print(f"Loading model {args.model_name}")
|
33 |
+
is_mamba = args.model_name.startswith("state-spaces/mamba-") or "mamba" in args.model_name
|
34 |
+
|
35 |
+
if is_mamba:
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained("/home/zhulianghui/VisionProjects/mamba/ckpts/gpt-neox-20b-tokenizer")
|
37 |
+
model = MambaLMHeadModel.from_pretrained(args.model_name, device=device, dtype=dtype)
|
38 |
+
else:
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
40 |
+
model = AutoModelForCausalLM.from_pretrained(args.model_name, device_map={"": device}, torch_dtype=dtype)
|
41 |
+
model.eval()
|
42 |
+
print(f"Number of parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
|
43 |
+
|
44 |
+
torch.random.manual_seed(0)
|
45 |
+
if args.prompt is None:
|
46 |
+
input_ids = torch.randint(1, 1000, (args.batch, args.promptlen), dtype=torch.long, device="cuda")
|
47 |
+
attn_mask = torch.ones_like(input_ids, dtype=torch.long, device="cuda")
|
48 |
+
else:
|
49 |
+
tokens = tokenizer(args.prompt, return_tensors="pt")
|
50 |
+
input_ids = tokens.input_ids.to(device=device)
|
51 |
+
attn_mask = tokens.attention_mask.to(device=device)
|
52 |
+
max_length = input_ids.shape[1] + args.genlen
|
53 |
+
|
54 |
+
if is_mamba:
|
55 |
+
fn = lambda: model.generate(
|
56 |
+
input_ids=input_ids,
|
57 |
+
max_length=max_length,
|
58 |
+
cg=True,
|
59 |
+
return_dict_in_generate=True,
|
60 |
+
output_scores=True,
|
61 |
+
enable_timing=False,
|
62 |
+
temperature=args.temperature,
|
63 |
+
top_k=args.topk,
|
64 |
+
top_p=args.topp,
|
65 |
+
)
|
66 |
+
else:
|
67 |
+
fn = lambda: model.generate(
|
68 |
+
input_ids=input_ids,
|
69 |
+
attention_mask=attn_mask,
|
70 |
+
max_length=max_length,
|
71 |
+
return_dict_in_generate=True,
|
72 |
+
pad_token_id=tokenizer.eos_token_id,
|
73 |
+
do_sample=True,
|
74 |
+
temperature=args.temperature,
|
75 |
+
top_k=args.topk,
|
76 |
+
top_p=args.topp,
|
77 |
+
)
|
78 |
+
out = fn()
|
79 |
+
if args.prompt is not None:
|
80 |
+
print(tokenizer.batch_decode(out.sequences.tolist()))
|
81 |
+
|
82 |
+
torch.cuda.synchronize()
|
83 |
+
start = time.time()
|
84 |
+
for _ in range(repeats):
|
85 |
+
fn()
|
86 |
+
torch.cuda.synchronize()
|
87 |
+
print(f"Prompt length: {len(input_ids[0])}, generation length: {len(out.sequences[0]) - len(input_ids[0])}")
|
88 |
+
print(f"{args.model_name} prompt processing + decoding time: {(time.time() - start) / repeats * 1000:.0f}ms")
|
mamba/csrc/selective_scan/reverse_scan.cuh
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
#include <cub/config.cuh>
|
8 |
+
|
9 |
+
#include <cub/util_ptx.cuh>
|
10 |
+
#include <cub/util_type.cuh>
|
11 |
+
#include <cub/block/block_raking_layout.cuh>
|
12 |
+
// #include <cub/detail/uninitialized_copy.cuh>
|
13 |
+
#include "uninitialized_copy.cuh"
|
14 |
+
|
15 |
+
/**
|
16 |
+
* Perform a reverse sequential reduction over \p LENGTH elements of the \p input array. The aggregate is returned.
|
17 |
+
*/
|
18 |
+
template <
|
19 |
+
int LENGTH,
|
20 |
+
typename T,
|
21 |
+
typename ReductionOp>
|
22 |
+
__device__ __forceinline__ T ThreadReverseReduce(const T (&input)[LENGTH], ReductionOp reduction_op) {
|
23 |
+
static_assert(LENGTH > 0);
|
24 |
+
T retval = input[LENGTH - 1];
|
25 |
+
#pragma unroll
|
26 |
+
for (int i = LENGTH - 2; i >= 0; --i) { retval = reduction_op(retval, input[i]); }
|
27 |
+
return retval;
|
28 |
+
}
|
29 |
+
|
30 |
+
/**
|
31 |
+
* Perform a sequential inclusive postfix reverse scan over the statically-sized \p input array, seeded with the specified \p postfix. The aggregate is returned.
|
32 |
+
*/
|
33 |
+
template <
|
34 |
+
int LENGTH,
|
35 |
+
typename T,
|
36 |
+
typename ScanOp>
|
37 |
+
__device__ __forceinline__ T ThreadReverseScanInclusive(
|
38 |
+
const T (&input)[LENGTH],
|
39 |
+
T (&output)[LENGTH],
|
40 |
+
ScanOp scan_op,
|
41 |
+
const T postfix)
|
42 |
+
{
|
43 |
+
T inclusive = postfix;
|
44 |
+
#pragma unroll
|
45 |
+
for (int i = LENGTH - 1; i >= 0; --i) {
|
46 |
+
inclusive = scan_op(inclusive, input[i]);
|
47 |
+
output[i] = inclusive;
|
48 |
+
}
|
49 |
+
}
|
50 |
+
|
51 |
+
/**
|
52 |
+
* Perform a sequential exclusive postfix reverse scan over the statically-sized \p input array, seeded with the specified \p postfix. The aggregate is returned.
|
53 |
+
*/
|
54 |
+
template <
|
55 |
+
int LENGTH,
|
56 |
+
typename T,
|
57 |
+
typename ScanOp>
|
58 |
+
__device__ __forceinline__ T ThreadReverseScanExclusive(
|
59 |
+
const T (&input)[LENGTH],
|
60 |
+
T (&output)[LENGTH],
|
61 |
+
ScanOp scan_op,
|
62 |
+
const T postfix)
|
63 |
+
{
|
64 |
+
// Careful, output maybe be aliased to input
|
65 |
+
T exclusive = postfix;
|
66 |
+
T inclusive;
|
67 |
+
#pragma unroll
|
68 |
+
for (int i = LENGTH - 1; i >= 0; --i) {
|
69 |
+
inclusive = scan_op(exclusive, input[i]);
|
70 |
+
output[i] = exclusive;
|
71 |
+
exclusive = inclusive;
|
72 |
+
}
|
73 |
+
return inclusive;
|
74 |
+
}
|
75 |
+
|
76 |
+
|
77 |
+
/**
|
78 |
+
* \brief WarpReverseScan provides SHFL-based variants of parallel postfix scan of items partitioned across a CUDA thread warp.
|
79 |
+
*
|
80 |
+
* LOGICAL_WARP_THREADS must be a power-of-two
|
81 |
+
*/
|
82 |
+
template <
|
83 |
+
typename T, ///< Data type being scanned
|
84 |
+
int LOGICAL_WARP_THREADS ///< Number of threads per logical warp
|
85 |
+
>
|
86 |
+
struct WarpReverseScan {
|
87 |
+
//---------------------------------------------------------------------
|
88 |
+
// Constants and type definitions
|
89 |
+
//---------------------------------------------------------------------
|
90 |
+
|
91 |
+
/// Whether the logical warp size and the PTX warp size coincide
|
92 |
+
static constexpr bool IS_ARCH_WARP = (LOGICAL_WARP_THREADS == CUB_WARP_THREADS(0));
|
93 |
+
/// The number of warp scan steps
|
94 |
+
static constexpr int STEPS = cub::Log2<LOGICAL_WARP_THREADS>::VALUE;
|
95 |
+
static_assert(LOGICAL_WARP_THREADS == 1 << STEPS);
|
96 |
+
|
97 |
+
|
98 |
+
//---------------------------------------------------------------------
|
99 |
+
// Thread fields
|
100 |
+
//---------------------------------------------------------------------
|
101 |
+
|
102 |
+
/// Lane index in logical warp
|
103 |
+
unsigned int lane_id;
|
104 |
+
|
105 |
+
/// Logical warp index in 32-thread physical warp
|
106 |
+
unsigned int warp_id;
|
107 |
+
|
108 |
+
/// 32-thread physical warp member mask of logical warp
|
109 |
+
unsigned int member_mask;
|
110 |
+
|
111 |
+
//---------------------------------------------------------------------
|
112 |
+
// Construction
|
113 |
+
//---------------------------------------------------------------------
|
114 |
+
|
115 |
+
/// Constructor
|
116 |
+
explicit __device__ __forceinline__
|
117 |
+
WarpReverseScan()
|
118 |
+
: lane_id(cub::LaneId())
|
119 |
+
, warp_id(IS_ARCH_WARP ? 0 : (lane_id / LOGICAL_WARP_THREADS))
|
120 |
+
, member_mask(cub::WarpMask<LOGICAL_WARP_THREADS>(warp_id))
|
121 |
+
{
|
122 |
+
if (!IS_ARCH_WARP) {
|
123 |
+
lane_id = lane_id % LOGICAL_WARP_THREADS;
|
124 |
+
}
|
125 |
+
}
|
126 |
+
|
127 |
+
|
128 |
+
/// Broadcast
|
129 |
+
__device__ __forceinline__ T Broadcast(
|
130 |
+
T input, ///< [in] The value to broadcast
|
131 |
+
int src_lane) ///< [in] Which warp lane is to do the broadcasting
|
132 |
+
{
|
133 |
+
return cub::ShuffleIndex<LOGICAL_WARP_THREADS>(input, src_lane, member_mask);
|
134 |
+
}
|
135 |
+
|
136 |
+
|
137 |
+
/// Inclusive scan
|
138 |
+
template <typename ScanOpT>
|
139 |
+
__device__ __forceinline__ void InclusiveReverseScan(
|
140 |
+
T input, ///< [in] Calling thread's input item.
|
141 |
+
T &inclusive_output, ///< [out] Calling thread's output item. May be aliased with \p input.
|
142 |
+
ScanOpT scan_op) ///< [in] Binary scan operator
|
143 |
+
{
|
144 |
+
inclusive_output = input;
|
145 |
+
#pragma unroll
|
146 |
+
for (int STEP = 0; STEP < STEPS; STEP++) {
|
147 |
+
int offset = 1 << STEP;
|
148 |
+
T temp = cub::ShuffleDown<LOGICAL_WARP_THREADS>(
|
149 |
+
inclusive_output, offset, LOGICAL_WARP_THREADS - 1, member_mask
|
150 |
+
);
|
151 |
+
// Perform scan op if from a valid peer
|
152 |
+
inclusive_output = static_cast<int>(lane_id) >= LOGICAL_WARP_THREADS - offset
|
153 |
+
? inclusive_output : scan_op(temp, inclusive_output);
|
154 |
+
}
|
155 |
+
}
|
156 |
+
|
157 |
+
/// Exclusive scan
|
158 |
+
// Get exclusive from inclusive
|
159 |
+
template <typename ScanOpT>
|
160 |
+
__device__ __forceinline__ void ExclusiveReverseScan(
|
161 |
+
T input, ///< [in] Calling thread's input item.
|
162 |
+
T &exclusive_output, ///< [out] Calling thread's output item. May be aliased with \p input.
|
163 |
+
ScanOpT scan_op, ///< [in] Binary scan operator
|
164 |
+
T &warp_aggregate) ///< [out] Warp-wide aggregate reduction of input items.
|
165 |
+
{
|
166 |
+
T inclusive_output;
|
167 |
+
InclusiveReverseScan(input, inclusive_output, scan_op);
|
168 |
+
warp_aggregate = cub::ShuffleIndex<LOGICAL_WARP_THREADS>(inclusive_output, 0, member_mask);
|
169 |
+
// initial value unknown
|
170 |
+
exclusive_output = cub::ShuffleDown<LOGICAL_WARP_THREADS>(
|
171 |
+
inclusive_output, 1, LOGICAL_WARP_THREADS - 1, member_mask
|
172 |
+
);
|
173 |
+
}
|
174 |
+
|
175 |
+
/**
|
176 |
+
* \brief Computes both inclusive and exclusive reverse scans using the specified binary scan functor across the calling warp. Because no initial value is supplied, the \p exclusive_output computed for the last <em>warp-lane</em> is undefined.
|
177 |
+
*/
|
178 |
+
template <typename ScanOpT>
|
179 |
+
__device__ __forceinline__ void ReverseScan(
|
180 |
+
T input, ///< [in] Calling thread's input item.
|
181 |
+
T &inclusive_output, ///< [out] Calling thread's inclusive-scan output item.
|
182 |
+
T &exclusive_output, ///< [out] Calling thread's exclusive-scan output item.
|
183 |
+
ScanOpT scan_op) ///< [in] Binary scan operator
|
184 |
+
{
|
185 |
+
InclusiveReverseScan(input, inclusive_output, scan_op);
|
186 |
+
// initial value unknown
|
187 |
+
exclusive_output = cub::ShuffleDown<LOGICAL_WARP_THREADS>(
|
188 |
+
inclusive_output, 1, LOGICAL_WARP_THREADS - 1, member_mask
|
189 |
+
);
|
190 |
+
}
|
191 |
+
|
192 |
+
};
|
193 |
+
|
194 |
+
/**
|
195 |
+
* \brief BlockReverseScan provides variants of raking-based parallel postfix scan across a CUDA thread block.
|
196 |
+
*/
|
197 |
+
template <
|
198 |
+
typename T, ///< Data type being scanned
|
199 |
+
int BLOCK_DIM_X, ///< The thread block length in threads along the X dimension
|
200 |
+
bool MEMOIZE=false ///< Whether or not to buffer outer raking scan partials to incur fewer shared memory reads at the expense of higher register pressure
|
201 |
+
>
|
202 |
+
struct BlockReverseScan {
|
203 |
+
//---------------------------------------------------------------------
|
204 |
+
// Types and constants
|
205 |
+
//---------------------------------------------------------------------
|
206 |
+
|
207 |
+
/// Constants
|
208 |
+
/// The thread block size in threads
|
209 |
+
static constexpr int BLOCK_THREADS = BLOCK_DIM_X;
|
210 |
+
|
211 |
+
/// Layout type for padded thread block raking grid
|
212 |
+
using BlockRakingLayout = cub::BlockRakingLayout<T, BLOCK_THREADS>;
|
213 |
+
// The number of reduction elements is not a multiple of the number of raking threads for now
|
214 |
+
static_assert(BlockRakingLayout::UNGUARDED);
|
215 |
+
|
216 |
+
/// Number of raking threads
|
217 |
+
static constexpr int RAKING_THREADS = BlockRakingLayout::RAKING_THREADS;
|
218 |
+
/// Number of raking elements per warp synchronous raking thread
|
219 |
+
static constexpr int SEGMENT_LENGTH = BlockRakingLayout::SEGMENT_LENGTH;
|
220 |
+
/// Cooperative work can be entirely warp synchronous
|
221 |
+
static constexpr bool WARP_SYNCHRONOUS = (int(BLOCK_THREADS) == int(RAKING_THREADS));
|
222 |
+
|
223 |
+
/// WarpReverseScan utility type
|
224 |
+
using WarpReverseScan = WarpReverseScan<T, RAKING_THREADS>;
|
225 |
+
|
226 |
+
/// Shared memory storage layout type
|
227 |
+
struct _TempStorage {
|
228 |
+
typename BlockRakingLayout::TempStorage raking_grid; ///< Padded thread block raking grid
|
229 |
+
};
|
230 |
+
|
231 |
+
|
232 |
+
/// Alias wrapper allowing storage to be unioned
|
233 |
+
struct TempStorage : cub::Uninitialized<_TempStorage> {};
|
234 |
+
|
235 |
+
|
236 |
+
//---------------------------------------------------------------------
|
237 |
+
// Per-thread fields
|
238 |
+
//---------------------------------------------------------------------
|
239 |
+
|
240 |
+
// Thread fields
|
241 |
+
_TempStorage &temp_storage;
|
242 |
+
unsigned int linear_tid;
|
243 |
+
T cached_segment[SEGMENT_LENGTH];
|
244 |
+
|
245 |
+
|
246 |
+
//---------------------------------------------------------------------
|
247 |
+
// Utility methods
|
248 |
+
//---------------------------------------------------------------------
|
249 |
+
|
250 |
+
/// Performs upsweep raking reduction, returning the aggregate
|
251 |
+
template <typename ScanOp>
|
252 |
+
__device__ __forceinline__ T Upsweep(ScanOp scan_op) {
|
253 |
+
T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
|
254 |
+
// Read data into registers
|
255 |
+
#pragma unroll
|
256 |
+
for (int i = 0; i < SEGMENT_LENGTH; ++i) { cached_segment[i] = smem_raking_ptr[i]; }
|
257 |
+
T raking_partial = cached_segment[SEGMENT_LENGTH - 1];
|
258 |
+
#pragma unroll
|
259 |
+
for (int i = SEGMENT_LENGTH - 2; i >= 0; --i) {
|
260 |
+
raking_partial = scan_op(raking_partial, cached_segment[i]);
|
261 |
+
}
|
262 |
+
return raking_partial;
|
263 |
+
}
|
264 |
+
|
265 |
+
|
266 |
+
/// Performs exclusive downsweep raking scan
|
267 |
+
template <typename ScanOp>
|
268 |
+
__device__ __forceinline__ void ExclusiveDownsweep(
|
269 |
+
ScanOp scan_op,
|
270 |
+
T raking_partial)
|
271 |
+
{
|
272 |
+
T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
|
273 |
+
// Read data back into registers
|
274 |
+
if (!MEMOIZE) {
|
275 |
+
#pragma unroll
|
276 |
+
for (int i = 0; i < SEGMENT_LENGTH; ++i) { cached_segment[i] = smem_raking_ptr[i]; }
|
277 |
+
}
|
278 |
+
ThreadReverseScanExclusive(cached_segment, cached_segment, scan_op, raking_partial);
|
279 |
+
// Write data back to smem
|
280 |
+
#pragma unroll
|
281 |
+
for (int i = 0; i < SEGMENT_LENGTH; ++i) { smem_raking_ptr[i] = cached_segment[i]; }
|
282 |
+
}
|
283 |
+
|
284 |
+
|
285 |
+
//---------------------------------------------------------------------
|
286 |
+
// Constructors
|
287 |
+
//---------------------------------------------------------------------
|
288 |
+
|
289 |
+
/// Constructor
|
290 |
+
__device__ __forceinline__ BlockReverseScan(
|
291 |
+
TempStorage &temp_storage)
|
292 |
+
:
|
293 |
+
temp_storage(temp_storage.Alias()),
|
294 |
+
linear_tid(cub::RowMajorTid(BLOCK_DIM_X, 1, 1))
|
295 |
+
{}
|
296 |
+
|
297 |
+
|
298 |
+
/// Computes an exclusive thread block-wide postfix scan using the specified binary \p scan_op functor. Each thread contributes one input element. the call-back functor \p block_postfix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically postfixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
|
299 |
+
template <
|
300 |
+
typename ScanOp,
|
301 |
+
typename BlockPostfixCallbackOp>
|
302 |
+
__device__ __forceinline__ void ExclusiveReverseScan(
|
303 |
+
T input, ///< [in] Calling thread's input item
|
304 |
+
T &exclusive_output, ///< [out] Calling thread's output item (may be aliased to \p input)
|
305 |
+
ScanOp scan_op, ///< [in] Binary scan operator
|
306 |
+
BlockPostfixCallbackOp &block_postfix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a thread block-wide postfix to be applied to all inputs.
|
307 |
+
{
|
308 |
+
if (WARP_SYNCHRONOUS) {
|
309 |
+
// Short-circuit directly to warp-synchronous scan
|
310 |
+
T block_aggregate;
|
311 |
+
WarpReverseScan warp_scan;
|
312 |
+
warp_scan.ExclusiveReverseScan(input, exclusive_output, scan_op, block_aggregate);
|
313 |
+
// Obtain warp-wide postfix in lane0, then broadcast to other lanes
|
314 |
+
T block_postfix = block_postfix_callback_op(block_aggregate);
|
315 |
+
block_postfix = warp_scan.Broadcast(block_postfix, 0);
|
316 |
+
exclusive_output = linear_tid == BLOCK_THREADS - 1 ? block_postfix : scan_op(block_postfix, exclusive_output);
|
317 |
+
} else {
|
318 |
+
// Place thread partial into shared memory raking grid
|
319 |
+
T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
|
320 |
+
detail::uninitialized_copy(placement_ptr, input);
|
321 |
+
cub::CTA_SYNC();
|
322 |
+
// Reduce parallelism down to just raking threads
|
323 |
+
if (linear_tid < RAKING_THREADS) {
|
324 |
+
WarpReverseScan warp_scan;
|
325 |
+
// Raking upsweep reduction across shared partials
|
326 |
+
T upsweep_partial = Upsweep(scan_op);
|
327 |
+
// Warp-synchronous scan
|
328 |
+
T exclusive_partial, block_aggregate;
|
329 |
+
warp_scan.ExclusiveReverseScan(upsweep_partial, exclusive_partial, scan_op, block_aggregate);
|
330 |
+
// Obtain block-wide postfix in lane0, then broadcast to other lanes
|
331 |
+
T block_postfix = block_postfix_callback_op(block_aggregate);
|
332 |
+
block_postfix = warp_scan.Broadcast(block_postfix, 0);
|
333 |
+
// Update postfix with warpscan exclusive partial
|
334 |
+
T downsweep_postfix = linear_tid == RAKING_THREADS - 1
|
335 |
+
? block_postfix : scan_op(block_postfix, exclusive_partial);
|
336 |
+
// Exclusive raking downsweep scan
|
337 |
+
ExclusiveDownsweep(scan_op, downsweep_postfix);
|
338 |
+
}
|
339 |
+
cub::CTA_SYNC();
|
340 |
+
// Grab thread postfix from shared memory
|
341 |
+
exclusive_output = *placement_ptr;
|
342 |
+
|
343 |
+
// // Compute warp scan in each warp.
|
344 |
+
// // The exclusive output from the last lane in each warp is invalid.
|
345 |
+
// T inclusive_output;
|
346 |
+
// WarpReverseScan warp_scan;
|
347 |
+
// warp_scan.ReverseScan(input, inclusive_output, exclusive_output, scan_op);
|
348 |
+
|
349 |
+
// // Compute the warp-wide postfix and block-wide aggregate for each warp. Warp postfix for the last warp is invalid.
|
350 |
+
// T block_aggregate;
|
351 |
+
// T warp_postfix = ComputeWarpPostfix(scan_op, inclusive_output, block_aggregate);
|
352 |
+
|
353 |
+
// // Apply warp postfix to our lane's partial
|
354 |
+
// if (warp_id != 0) {
|
355 |
+
// exclusive_output = scan_op(warp_postfix, exclusive_output);
|
356 |
+
// if (lane_id == 0) { exclusive_output = warp_postfix; }
|
357 |
+
// }
|
358 |
+
|
359 |
+
// // Use the first warp to determine the thread block postfix, returning the result in lane0
|
360 |
+
// if (warp_id == 0) {
|
361 |
+
// T block_postfix = block_postfix_callback_op(block_aggregate);
|
362 |
+
// if (lane_id == 0) {
|
363 |
+
// // Share the postfix with all threads
|
364 |
+
// detail::uninitialized_copy(&temp_storage.block_postfix,
|
365 |
+
// block_postfix);
|
366 |
+
|
367 |
+
// exclusive_output = block_postfix; // The block postfix is the exclusive output for tid0
|
368 |
+
// }
|
369 |
+
// }
|
370 |
+
|
371 |
+
// cub::CTA_SYNC();
|
372 |
+
|
373 |
+
// // Incorporate thread block postfix into outputs
|
374 |
+
// T block_postfix = temp_storage.block_postfix;
|
375 |
+
// if (linear_tid > 0) { exclusive_output = scan_op(block_postfix, exclusive_output); }
|
376 |
+
}
|
377 |
+
}
|
378 |
+
|
379 |
+
|
380 |
+
/**
|
381 |
+
* \brief Computes an inclusive block-wide postfix scan using the specified binary \p scan_op functor. Each thread contributes an array of consecutive input elements. the call-back functor \p block_postfix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically postfixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
|
382 |
+
*/
|
383 |
+
template <
|
384 |
+
int ITEMS_PER_THREAD,
|
385 |
+
typename ScanOp,
|
386 |
+
typename BlockPostfixCallbackOp>
|
387 |
+
__device__ __forceinline__ void InclusiveReverseScan(
|
388 |
+
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
|
389 |
+
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
|
390 |
+
ScanOp scan_op, ///< [in] Binary scan functor
|
391 |
+
BlockPostfixCallbackOp &block_postfix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a block-wide postfix to be applied to the logical input sequence.
|
392 |
+
{
|
393 |
+
// Reduce consecutive thread items in registers
|
394 |
+
T thread_postfix = ThreadReverseReduce(input, scan_op);
|
395 |
+
// Exclusive thread block-scan
|
396 |
+
ExclusiveReverseScan(thread_postfix, thread_postfix, scan_op, block_postfix_callback_op);
|
397 |
+
// Inclusive scan in registers with postfix as seed
|
398 |
+
ThreadReverseScanInclusive(input, output, scan_op, thread_postfix);
|
399 |
+
}
|
400 |
+
|
401 |
+
};
|
mamba/csrc/selective_scan/selective_scan.cpp
ADDED
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#include <ATen/cuda/CUDAContext.h>
|
6 |
+
#include <c10/cuda/CUDAGuard.h>
|
7 |
+
#include <torch/extension.h>
|
8 |
+
#include <vector>
|
9 |
+
|
10 |
+
#include "selective_scan.h"
|
11 |
+
|
12 |
+
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
|
13 |
+
|
14 |
+
#define DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
|
15 |
+
if (ITYPE == at::ScalarType::Half) { \
|
16 |
+
using input_t = at::Half; \
|
17 |
+
__VA_ARGS__(); \
|
18 |
+
} else if (ITYPE == at::ScalarType::BFloat16) { \
|
19 |
+
using input_t = at::BFloat16; \
|
20 |
+
__VA_ARGS__(); \
|
21 |
+
} else if (ITYPE == at::ScalarType::Float) { \
|
22 |
+
using input_t = float; \
|
23 |
+
__VA_ARGS__(); \
|
24 |
+
} else { \
|
25 |
+
AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
|
26 |
+
}
|
27 |
+
|
28 |
+
#define DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(WTYPE, NAME, ...) \
|
29 |
+
if (WTYPE == at::ScalarType::Half) { \
|
30 |
+
using weight_t = at::Half; \
|
31 |
+
__VA_ARGS__(); \
|
32 |
+
} else if (WTYPE == at::ScalarType::BFloat16) { \
|
33 |
+
using weight_t = at::BFloat16; \
|
34 |
+
__VA_ARGS__(); \
|
35 |
+
} else if (WTYPE == at::ScalarType::Float) { \
|
36 |
+
using weight_t = float; \
|
37 |
+
__VA_ARGS__(); \
|
38 |
+
} else { \
|
39 |
+
AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
|
40 |
+
}
|
41 |
+
|
42 |
+
#define DISPATCH_WTYPE_FLOAT_AND_COMPLEX(WTYPE, NAME, ...) \
|
43 |
+
if (WTYPE == at::ScalarType::Float) { \
|
44 |
+
using weight_t = float; \
|
45 |
+
__VA_ARGS__(); \
|
46 |
+
} else if (WTYPE == at::ScalarType::ComplexFloat) { \
|
47 |
+
using weight_t = c10::complex<float>; \
|
48 |
+
__VA_ARGS__(); \
|
49 |
+
} else { \
|
50 |
+
AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
|
51 |
+
}
|
52 |
+
|
53 |
+
template<typename input_t, typename weight_t>
|
54 |
+
void selective_scan_fwd_cuda(SSMParamsBase ¶ms, cudaStream_t stream);
|
55 |
+
|
56 |
+
template <typename input_t, typename weight_t>
|
57 |
+
void selective_scan_bwd_cuda(SSMParamsBwd ¶ms, cudaStream_t stream);
|
58 |
+
|
59 |
+
void set_ssm_params_fwd(SSMParamsBase ¶ms,
|
60 |
+
// sizes
|
61 |
+
const size_t batch,
|
62 |
+
const size_t dim,
|
63 |
+
const size_t seqlen,
|
64 |
+
const size_t dstate,
|
65 |
+
const size_t n_groups,
|
66 |
+
const size_t n_chunks,
|
67 |
+
const bool is_variable_B,
|
68 |
+
const bool is_variable_C,
|
69 |
+
// device pointers
|
70 |
+
const at::Tensor u,
|
71 |
+
const at::Tensor delta,
|
72 |
+
const at::Tensor A,
|
73 |
+
const at::Tensor B,
|
74 |
+
const at::Tensor C,
|
75 |
+
const at::Tensor out,
|
76 |
+
const at::Tensor z,
|
77 |
+
const at::Tensor out_z,
|
78 |
+
void* D_ptr,
|
79 |
+
void* delta_bias_ptr,
|
80 |
+
void* x_ptr,
|
81 |
+
bool has_z,
|
82 |
+
bool delta_softplus) {
|
83 |
+
|
84 |
+
// Reset the parameters
|
85 |
+
memset(¶ms, 0, sizeof(params));
|
86 |
+
|
87 |
+
params.batch = batch;
|
88 |
+
params.dim = dim;
|
89 |
+
params.seqlen = seqlen;
|
90 |
+
params.dstate = dstate;
|
91 |
+
params.n_groups = n_groups;
|
92 |
+
params.n_chunks = n_chunks;
|
93 |
+
params.dim_ngroups_ratio = dim / n_groups;
|
94 |
+
|
95 |
+
params.delta_softplus = delta_softplus;
|
96 |
+
|
97 |
+
params.is_variable_B = is_variable_B;
|
98 |
+
params.is_variable_C = is_variable_C;
|
99 |
+
|
100 |
+
// Set the pointers and strides.
|
101 |
+
params.u_ptr = u.data_ptr();
|
102 |
+
params.delta_ptr = delta.data_ptr();
|
103 |
+
params.A_ptr = A.data_ptr();
|
104 |
+
params.B_ptr = B.data_ptr();
|
105 |
+
params.C_ptr = C.data_ptr();
|
106 |
+
params.D_ptr = D_ptr;
|
107 |
+
params.delta_bias_ptr = delta_bias_ptr;
|
108 |
+
params.out_ptr = out.data_ptr();
|
109 |
+
params.x_ptr = x_ptr;
|
110 |
+
params.z_ptr = has_z ? z.data_ptr() : nullptr;
|
111 |
+
params.out_z_ptr = has_z ? out_z.data_ptr() : nullptr;
|
112 |
+
// All stride are in elements, not bytes.
|
113 |
+
params.A_d_stride = A.stride(0);
|
114 |
+
params.A_dstate_stride = A.stride(1);
|
115 |
+
if (!is_variable_B) {
|
116 |
+
params.B_d_stride = B.stride(0);
|
117 |
+
} else {
|
118 |
+
params.B_batch_stride = B.stride(0);
|
119 |
+
params.B_group_stride = B.stride(1);
|
120 |
+
}
|
121 |
+
params.B_dstate_stride = !is_variable_B ? B.stride(1) : B.stride(2);
|
122 |
+
if (!is_variable_C) {
|
123 |
+
params.C_d_stride = C.stride(0);
|
124 |
+
} else {
|
125 |
+
params.C_batch_stride = C.stride(0);
|
126 |
+
params.C_group_stride = C.stride(1);
|
127 |
+
}
|
128 |
+
params.C_dstate_stride = !is_variable_C ? C.stride(1) : C.stride(2);
|
129 |
+
params.u_batch_stride = u.stride(0);
|
130 |
+
params.u_d_stride = u.stride(1);
|
131 |
+
params.delta_batch_stride = delta.stride(0);
|
132 |
+
params.delta_d_stride = delta.stride(1);
|
133 |
+
if (has_z) {
|
134 |
+
params.z_batch_stride = z.stride(0);
|
135 |
+
params.z_d_stride = z.stride(1);
|
136 |
+
params.out_z_batch_stride = out_z.stride(0);
|
137 |
+
params.out_z_d_stride = out_z.stride(1);
|
138 |
+
}
|
139 |
+
params.out_batch_stride = out.stride(0);
|
140 |
+
params.out_d_stride = out.stride(1);
|
141 |
+
}
|
142 |
+
|
143 |
+
void set_ssm_params_bwd(SSMParamsBwd ¶ms,
|
144 |
+
// sizes
|
145 |
+
const size_t batch,
|
146 |
+
const size_t dim,
|
147 |
+
const size_t seqlen,
|
148 |
+
const size_t dstate,
|
149 |
+
const size_t n_groups,
|
150 |
+
const size_t n_chunks,
|
151 |
+
const bool is_variable_B,
|
152 |
+
const bool is_variable_C,
|
153 |
+
// device pointers
|
154 |
+
const at::Tensor u,
|
155 |
+
const at::Tensor delta,
|
156 |
+
const at::Tensor A,
|
157 |
+
const at::Tensor B,
|
158 |
+
const at::Tensor C,
|
159 |
+
const at::Tensor z,
|
160 |
+
const at::Tensor out,
|
161 |
+
const at::Tensor out_z,
|
162 |
+
void* D_ptr,
|
163 |
+
void* delta_bias_ptr,
|
164 |
+
void* x_ptr,
|
165 |
+
const at::Tensor dout,
|
166 |
+
const at::Tensor du,
|
167 |
+
const at::Tensor ddelta,
|
168 |
+
const at::Tensor dA,
|
169 |
+
const at::Tensor dB,
|
170 |
+
const at::Tensor dC,
|
171 |
+
const at::Tensor dz,
|
172 |
+
void* dD_ptr,
|
173 |
+
void* ddelta_bias_ptr,
|
174 |
+
bool has_z,
|
175 |
+
bool delta_softplus,
|
176 |
+
bool recompute_out_z) {
|
177 |
+
// Pass in "dout" instead of "out", we're not gonna use "out" unless we have z
|
178 |
+
set_ssm_params_fwd(params, batch, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
|
179 |
+
u, delta, A, B, C, has_z ? out : dout,
|
180 |
+
has_z ? z : dout,
|
181 |
+
// If not recompute_out_z, pass dout instead of out_z.
|
182 |
+
// This won't be used by the bwd kernel
|
183 |
+
recompute_out_z ? out_z : dout,
|
184 |
+
D_ptr, delta_bias_ptr, x_ptr, has_z, delta_softplus);
|
185 |
+
if (!recompute_out_z) { params.out_z_ptr = nullptr; }
|
186 |
+
|
187 |
+
// Set the pointers and strides.
|
188 |
+
params.dout_ptr = dout.data_ptr();
|
189 |
+
params.du_ptr = du.data_ptr();
|
190 |
+
params.dA_ptr = dA.data_ptr();
|
191 |
+
params.dB_ptr = dB.data_ptr();
|
192 |
+
params.dC_ptr = dC.data_ptr();
|
193 |
+
params.dD_ptr = dD_ptr;
|
194 |
+
params.ddelta_ptr = ddelta.data_ptr();
|
195 |
+
params.ddelta_bias_ptr = ddelta_bias_ptr;
|
196 |
+
params.dz_ptr = has_z ? dz.data_ptr() : nullptr;
|
197 |
+
// All stride are in elements, not bytes.
|
198 |
+
params.dout_batch_stride = dout.stride(0);
|
199 |
+
params.dout_d_stride = dout.stride(1);
|
200 |
+
params.dA_d_stride = dA.stride(0);
|
201 |
+
params.dA_dstate_stride = dA.stride(1);
|
202 |
+
if (!is_variable_B) {
|
203 |
+
params.dB_d_stride = dB.stride(0);
|
204 |
+
} else {
|
205 |
+
params.dB_batch_stride = dB.stride(0);
|
206 |
+
params.dB_group_stride = dB.stride(1);
|
207 |
+
}
|
208 |
+
params.dB_dstate_stride = !is_variable_B ? dB.stride(1) : dB.stride(2);
|
209 |
+
if (!is_variable_C) {
|
210 |
+
params.dC_d_stride = dC.stride(0);
|
211 |
+
} else {
|
212 |
+
params.dC_batch_stride = dC.stride(0);
|
213 |
+
params.dC_group_stride = dC.stride(1);
|
214 |
+
}
|
215 |
+
params.dC_dstate_stride = !is_variable_C ? dC.stride(1) : dC.stride(2);
|
216 |
+
params.du_batch_stride = du.stride(0);
|
217 |
+
params.du_d_stride = du.stride(1);
|
218 |
+
params.ddelta_batch_stride = ddelta.stride(0);
|
219 |
+
params.ddelta_d_stride = ddelta.stride(1);
|
220 |
+
if (has_z) {
|
221 |
+
params.dz_batch_stride = dz.stride(0);
|
222 |
+
params.dz_d_stride = dz.stride(1);
|
223 |
+
}
|
224 |
+
}
|
225 |
+
|
226 |
+
std::vector<at::Tensor>
|
227 |
+
selective_scan_fwd(const at::Tensor &u, const at::Tensor &delta,
|
228 |
+
const at::Tensor &A, const at::Tensor &B, const at::Tensor &C,
|
229 |
+
const c10::optional<at::Tensor> &D_,
|
230 |
+
const c10::optional<at::Tensor> &z_,
|
231 |
+
const c10::optional<at::Tensor> &delta_bias_,
|
232 |
+
bool delta_softplus) {
|
233 |
+
auto input_type = u.scalar_type();
|
234 |
+
auto weight_type = A.scalar_type();
|
235 |
+
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
|
236 |
+
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::ComplexFloat);
|
237 |
+
|
238 |
+
const bool is_variable_B = B.dim() >= 3;
|
239 |
+
const bool is_variable_C = C.dim() >= 3;
|
240 |
+
const bool is_complex = weight_type == at::ScalarType::ComplexFloat;
|
241 |
+
|
242 |
+
TORCH_CHECK(delta.scalar_type() == input_type);
|
243 |
+
TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type));
|
244 |
+
TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type));
|
245 |
+
|
246 |
+
TORCH_CHECK(u.is_cuda());
|
247 |
+
TORCH_CHECK(delta.is_cuda());
|
248 |
+
TORCH_CHECK(A.is_cuda());
|
249 |
+
TORCH_CHECK(B.is_cuda());
|
250 |
+
TORCH_CHECK(C.is_cuda());
|
251 |
+
|
252 |
+
TORCH_CHECK(u.stride(-1) == 1);
|
253 |
+
TORCH_CHECK(delta.stride(-1) == 1);
|
254 |
+
|
255 |
+
const auto sizes = u.sizes();
|
256 |
+
const int batch_size = sizes[0];
|
257 |
+
const int dim = sizes[1];
|
258 |
+
const int seqlen = sizes[2];
|
259 |
+
const int dstate = A.size(1);
|
260 |
+
const int n_groups = is_variable_B ? B.size(1) : 1;
|
261 |
+
|
262 |
+
TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256");
|
263 |
+
|
264 |
+
CHECK_SHAPE(u, batch_size, dim, seqlen);
|
265 |
+
CHECK_SHAPE(delta, batch_size, dim, seqlen);
|
266 |
+
CHECK_SHAPE(A, dim, dstate);
|
267 |
+
if (!is_variable_B) {
|
268 |
+
CHECK_SHAPE(B, dim, dstate);
|
269 |
+
} else {
|
270 |
+
CHECK_SHAPE(B, batch_size, n_groups, dstate, !is_complex ? seqlen : seqlen * 2);
|
271 |
+
TORCH_CHECK(B.stride(-1) == 1);
|
272 |
+
}
|
273 |
+
if (!is_variable_C) {
|
274 |
+
CHECK_SHAPE(C, dim, dstate);
|
275 |
+
} else {
|
276 |
+
CHECK_SHAPE(C, batch_size, n_groups, dstate, !is_complex ? seqlen: seqlen * 2);
|
277 |
+
TORCH_CHECK(C.stride(-1) == 1);
|
278 |
+
}
|
279 |
+
|
280 |
+
if (D_.has_value()) {
|
281 |
+
auto D = D_.value();
|
282 |
+
TORCH_CHECK(D.scalar_type() == at::ScalarType::Float);
|
283 |
+
TORCH_CHECK(D.is_cuda());
|
284 |
+
TORCH_CHECK(D.stride(-1) == 1);
|
285 |
+
CHECK_SHAPE(D, dim);
|
286 |
+
}
|
287 |
+
|
288 |
+
if (delta_bias_.has_value()) {
|
289 |
+
auto delta_bias = delta_bias_.value();
|
290 |
+
TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float);
|
291 |
+
TORCH_CHECK(delta_bias.is_cuda());
|
292 |
+
TORCH_CHECK(delta_bias.stride(-1) == 1);
|
293 |
+
CHECK_SHAPE(delta_bias, dim);
|
294 |
+
}
|
295 |
+
|
296 |
+
at::Tensor z, out_z;
|
297 |
+
const bool has_z = z_.has_value();
|
298 |
+
if (has_z) {
|
299 |
+
z = z_.value();
|
300 |
+
TORCH_CHECK(z.scalar_type() == input_type);
|
301 |
+
TORCH_CHECK(z.is_cuda());
|
302 |
+
TORCH_CHECK(z.stride(-1) == 1);
|
303 |
+
CHECK_SHAPE(z, batch_size, dim, seqlen);
|
304 |
+
out_z = torch::empty_like(z);
|
305 |
+
}
|
306 |
+
|
307 |
+
const int n_chunks = (seqlen + 2048 - 1) / 2048;
|
308 |
+
// const int n_chunks = (seqlen + 1024 - 1) / 1024;
|
309 |
+
// at::Tensor out = torch::empty_like(u);
|
310 |
+
// Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout
|
311 |
+
at::Tensor out = torch::empty_like(delta);
|
312 |
+
at::Tensor x;
|
313 |
+
x = torch::empty({batch_size, dim, n_chunks, dstate * 2}, u.options().dtype(weight_type));
|
314 |
+
|
315 |
+
SSMParamsBase params;
|
316 |
+
set_ssm_params_fwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
|
317 |
+
u, delta, A, B, C, out, z, out_z,
|
318 |
+
D_.has_value() ? D_.value().data_ptr() : nullptr,
|
319 |
+
delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr,
|
320 |
+
x.data_ptr(),
|
321 |
+
has_z,
|
322 |
+
delta_softplus);
|
323 |
+
|
324 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
325 |
+
// Cast to char to avoid compiler warning about narrowing
|
326 |
+
at::cuda::CUDAGuard device_guard{(char)u.get_device()};
|
327 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
328 |
+
DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_fwd", [&] {
|
329 |
+
DISPATCH_WTYPE_FLOAT_AND_COMPLEX(A.scalar_type(), "selective_scan_fwd", [&] {
|
330 |
+
selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
|
331 |
+
});
|
332 |
+
});
|
333 |
+
std::vector<at::Tensor> result = {out, x};
|
334 |
+
if (has_z) { result.push_back(out_z); }
|
335 |
+
return result;
|
336 |
+
}
|
337 |
+
|
338 |
+
std::vector<at::Tensor>
|
339 |
+
selective_scan_bwd(const at::Tensor &u, const at::Tensor &delta,
|
340 |
+
const at::Tensor &A, const at::Tensor &B, const at::Tensor &C,
|
341 |
+
const c10::optional<at::Tensor> &D_,
|
342 |
+
const c10::optional<at::Tensor> &z_,
|
343 |
+
const c10::optional<at::Tensor> &delta_bias_,
|
344 |
+
const at::Tensor &dout,
|
345 |
+
const c10::optional<at::Tensor> &x_,
|
346 |
+
const c10::optional<at::Tensor> &out_,
|
347 |
+
c10::optional<at::Tensor> &dz_,
|
348 |
+
bool delta_softplus,
|
349 |
+
bool recompute_out_z) {
|
350 |
+
auto input_type = u.scalar_type();
|
351 |
+
auto weight_type = A.scalar_type();
|
352 |
+
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
|
353 |
+
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::ComplexFloat);
|
354 |
+
|
355 |
+
const bool is_variable_B = B.dim() >= 3;
|
356 |
+
const bool is_variable_C = C.dim() >= 3;
|
357 |
+
const bool is_complex = weight_type == at::ScalarType::ComplexFloat;
|
358 |
+
|
359 |
+
TORCH_CHECK(delta.scalar_type() == input_type);
|
360 |
+
TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type));
|
361 |
+
TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type));
|
362 |
+
TORCH_CHECK(dout.scalar_type() == input_type);
|
363 |
+
|
364 |
+
TORCH_CHECK(u.is_cuda());
|
365 |
+
TORCH_CHECK(delta.is_cuda());
|
366 |
+
TORCH_CHECK(A.is_cuda());
|
367 |
+
TORCH_CHECK(B.is_cuda());
|
368 |
+
TORCH_CHECK(C.is_cuda());
|
369 |
+
TORCH_CHECK(dout.is_cuda());
|
370 |
+
|
371 |
+
TORCH_CHECK(u.stride(-1) == 1);
|
372 |
+
TORCH_CHECK(delta.stride(-1) == 1);
|
373 |
+
TORCH_CHECK(dout.stride(-1) == 1);
|
374 |
+
|
375 |
+
const auto sizes = u.sizes();
|
376 |
+
const int batch_size = sizes[0];
|
377 |
+
const int dim = sizes[1];
|
378 |
+
const int seqlen = sizes[2];
|
379 |
+
const int dstate = A.size(1);
|
380 |
+
const int n_groups = is_variable_B ? B.size(1) : 1;
|
381 |
+
|
382 |
+
TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256");
|
383 |
+
|
384 |
+
CHECK_SHAPE(u, batch_size, dim, seqlen);
|
385 |
+
CHECK_SHAPE(delta, batch_size, dim, seqlen);
|
386 |
+
CHECK_SHAPE(A, dim, dstate);
|
387 |
+
if (!is_variable_B) {
|
388 |
+
CHECK_SHAPE(B, dim, dstate);
|
389 |
+
} else {
|
390 |
+
CHECK_SHAPE(B, batch_size, n_groups, dstate, !is_complex ? seqlen : seqlen * 2);
|
391 |
+
TORCH_CHECK(B.stride(-1) == 1);
|
392 |
+
}
|
393 |
+
if (!is_variable_C) {
|
394 |
+
CHECK_SHAPE(C, dim, dstate);
|
395 |
+
} else {
|
396 |
+
CHECK_SHAPE(C, batch_size, n_groups, dstate, !is_complex ? seqlen: seqlen * 2);
|
397 |
+
TORCH_CHECK(C.stride(-1) == 1);
|
398 |
+
}
|
399 |
+
CHECK_SHAPE(dout, batch_size, dim, seqlen);
|
400 |
+
|
401 |
+
if (D_.has_value()) {
|
402 |
+
auto D = D_.value();
|
403 |
+
TORCH_CHECK(D.scalar_type() == at::ScalarType::Float);
|
404 |
+
TORCH_CHECK(D.is_cuda());
|
405 |
+
TORCH_CHECK(D.stride(-1) == 1);
|
406 |
+
CHECK_SHAPE(D, dim);
|
407 |
+
}
|
408 |
+
|
409 |
+
if (delta_bias_.has_value()) {
|
410 |
+
auto delta_bias = delta_bias_.value();
|
411 |
+
TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float);
|
412 |
+
TORCH_CHECK(delta_bias.is_cuda());
|
413 |
+
TORCH_CHECK(delta_bias.stride(-1) == 1);
|
414 |
+
CHECK_SHAPE(delta_bias, dim);
|
415 |
+
}
|
416 |
+
|
417 |
+
at::Tensor z, out, dz, out_z;
|
418 |
+
const bool has_z = z_.has_value();
|
419 |
+
if (has_z) {
|
420 |
+
z = z_.value();
|
421 |
+
TORCH_CHECK(z.scalar_type() == input_type);
|
422 |
+
TORCH_CHECK(z.is_cuda());
|
423 |
+
TORCH_CHECK(z.stride(-1) == 1);
|
424 |
+
CHECK_SHAPE(z, batch_size, dim, seqlen);
|
425 |
+
|
426 |
+
TORCH_CHECK(out_.has_value());
|
427 |
+
out = out_.value();
|
428 |
+
TORCH_CHECK(out.scalar_type() == input_type);
|
429 |
+
TORCH_CHECK(out.is_cuda());
|
430 |
+
TORCH_CHECK(out.stride(-1) == 1);
|
431 |
+
CHECK_SHAPE(out, batch_size, dim, seqlen);
|
432 |
+
|
433 |
+
if (dz_.has_value()) {
|
434 |
+
dz = dz_.value();
|
435 |
+
TORCH_CHECK(dz.scalar_type() == input_type);
|
436 |
+
TORCH_CHECK(dz.is_cuda());
|
437 |
+
TORCH_CHECK(dz.stride(-1) == 1);
|
438 |
+
CHECK_SHAPE(dz, batch_size, dim, seqlen);
|
439 |
+
} else {
|
440 |
+
dz = torch::empty_like(z);
|
441 |
+
}
|
442 |
+
if (recompute_out_z) {
|
443 |
+
out_z = torch::empty_like(out);
|
444 |
+
}
|
445 |
+
}
|
446 |
+
|
447 |
+
const int n_chunks = (seqlen + 2048 - 1) / 2048;
|
448 |
+
// const int n_chunks = (seqlen + 1024 - 1) / 1024;
|
449 |
+
if (n_chunks > 1) { TORCH_CHECK(x_.has_value()); }
|
450 |
+
if (x_.has_value()) {
|
451 |
+
auto x = x_.value();
|
452 |
+
TORCH_CHECK(x.scalar_type() == weight_type);
|
453 |
+
TORCH_CHECK(x.is_cuda());
|
454 |
+
TORCH_CHECK(x.is_contiguous());
|
455 |
+
CHECK_SHAPE(x, batch_size, dim, n_chunks, 2 * dstate);
|
456 |
+
}
|
457 |
+
|
458 |
+
at::Tensor du = torch::empty_like(u);
|
459 |
+
at::Tensor ddelta = torch::empty_like(delta);
|
460 |
+
at::Tensor dA = torch::zeros_like(A);
|
461 |
+
at::Tensor dB = !is_variable_B ? torch::zeros_like(B) : torch::zeros_like(B, B.options().dtype(torch::kFloat32));
|
462 |
+
at::Tensor dC = !is_variable_C ? torch::zeros_like(C) : torch::zeros_like(C, C.options().dtype(torch::kFloat32));
|
463 |
+
at::Tensor dD;
|
464 |
+
if (D_.has_value()) { dD = torch::zeros_like(D_.value()); }
|
465 |
+
at::Tensor ddelta_bias;
|
466 |
+
if (delta_bias_.has_value()) { ddelta_bias = torch::zeros_like(delta_bias_.value()); }
|
467 |
+
|
468 |
+
SSMParamsBwd params;
|
469 |
+
set_ssm_params_bwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
|
470 |
+
u, delta, A, B, C, z, out, out_z,
|
471 |
+
D_.has_value() ? D_.value().data_ptr() : nullptr,
|
472 |
+
delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr,
|
473 |
+
x_.has_value() ? x_.value().data_ptr() : nullptr,
|
474 |
+
dout, du, ddelta, dA, dB, dC, dz,
|
475 |
+
D_.has_value() ? dD.data_ptr() : nullptr,
|
476 |
+
delta_bias_.has_value() ? ddelta_bias.data_ptr() : nullptr,
|
477 |
+
has_z, delta_softplus, recompute_out_z);
|
478 |
+
|
479 |
+
// Otherwise the kernel will be launched from cuda:0 device
|
480 |
+
// Cast to char to avoid compiler warning about narrowing
|
481 |
+
at::cuda::CUDAGuard device_guard{(char)u.get_device()};
|
482 |
+
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
483 |
+
DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_bwd", [&] {
|
484 |
+
DISPATCH_WTYPE_FLOAT_AND_COMPLEX(A.scalar_type(), "selective_scan_bwd", [&] {
|
485 |
+
selective_scan_bwd_cuda<input_t, weight_t>(params, stream);
|
486 |
+
});
|
487 |
+
});
|
488 |
+
std::vector<at::Tensor> result = {du, ddelta, dA, dB.to(B.dtype()), dC.to(C.dtype()), dD, ddelta_bias};
|
489 |
+
if (has_z) { result.push_back(dz); }
|
490 |
+
if (recompute_out_z) { result.push_back(out_z); }
|
491 |
+
return result;
|
492 |
+
}
|
493 |
+
|
494 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
495 |
+
m.def("fwd", &selective_scan_fwd, "Selective scan forward");
|
496 |
+
m.def("bwd", &selective_scan_bwd, "Selective scan backward");
|
497 |
+
}
|
mamba/csrc/selective_scan/selective_scan.h
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
8 |
+
|
9 |
+
struct SSMScanParamsBase {
|
10 |
+
using index_t = uint32_t;
|
11 |
+
|
12 |
+
int batch, seqlen, n_chunks;
|
13 |
+
index_t a_batch_stride;
|
14 |
+
index_t b_batch_stride;
|
15 |
+
index_t out_batch_stride;
|
16 |
+
|
17 |
+
// Common data pointers.
|
18 |
+
void *__restrict__ a_ptr;
|
19 |
+
void *__restrict__ b_ptr;
|
20 |
+
void *__restrict__ out_ptr;
|
21 |
+
void *__restrict__ x_ptr;
|
22 |
+
};
|
23 |
+
|
24 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
25 |
+
|
26 |
+
struct SSMParamsBase {
|
27 |
+
using index_t = uint32_t;
|
28 |
+
|
29 |
+
int batch, dim, seqlen, dstate, n_groups, n_chunks;
|
30 |
+
int dim_ngroups_ratio;
|
31 |
+
bool is_variable_B;
|
32 |
+
bool is_variable_C;
|
33 |
+
|
34 |
+
bool delta_softplus;
|
35 |
+
|
36 |
+
index_t A_d_stride;
|
37 |
+
index_t A_dstate_stride;
|
38 |
+
index_t B_batch_stride;
|
39 |
+
index_t B_d_stride;
|
40 |
+
index_t B_dstate_stride;
|
41 |
+
index_t B_group_stride;
|
42 |
+
index_t C_batch_stride;
|
43 |
+
index_t C_d_stride;
|
44 |
+
index_t C_dstate_stride;
|
45 |
+
index_t C_group_stride;
|
46 |
+
index_t u_batch_stride;
|
47 |
+
index_t u_d_stride;
|
48 |
+
index_t delta_batch_stride;
|
49 |
+
index_t delta_d_stride;
|
50 |
+
index_t z_batch_stride;
|
51 |
+
index_t z_d_stride;
|
52 |
+
index_t out_batch_stride;
|
53 |
+
index_t out_d_stride;
|
54 |
+
index_t out_z_batch_stride;
|
55 |
+
index_t out_z_d_stride;
|
56 |
+
|
57 |
+
// Common data pointers.
|
58 |
+
void *__restrict__ A_ptr;
|
59 |
+
void *__restrict__ B_ptr;
|
60 |
+
void *__restrict__ C_ptr;
|
61 |
+
void *__restrict__ D_ptr;
|
62 |
+
void *__restrict__ u_ptr;
|
63 |
+
void *__restrict__ delta_ptr;
|
64 |
+
void *__restrict__ delta_bias_ptr;
|
65 |
+
void *__restrict__ out_ptr;
|
66 |
+
void *__restrict__ x_ptr;
|
67 |
+
void *__restrict__ z_ptr;
|
68 |
+
void *__restrict__ out_z_ptr;
|
69 |
+
};
|
70 |
+
|
71 |
+
struct SSMParamsBwd: public SSMParamsBase {
|
72 |
+
index_t dout_batch_stride;
|
73 |
+
index_t dout_d_stride;
|
74 |
+
index_t dA_d_stride;
|
75 |
+
index_t dA_dstate_stride;
|
76 |
+
index_t dB_batch_stride;
|
77 |
+
index_t dB_group_stride;
|
78 |
+
index_t dB_d_stride;
|
79 |
+
index_t dB_dstate_stride;
|
80 |
+
index_t dC_batch_stride;
|
81 |
+
index_t dC_group_stride;
|
82 |
+
index_t dC_d_stride;
|
83 |
+
index_t dC_dstate_stride;
|
84 |
+
index_t du_batch_stride;
|
85 |
+
index_t du_d_stride;
|
86 |
+
index_t dz_batch_stride;
|
87 |
+
index_t dz_d_stride;
|
88 |
+
index_t ddelta_batch_stride;
|
89 |
+
index_t ddelta_d_stride;
|
90 |
+
|
91 |
+
// Common data pointers.
|
92 |
+
void *__restrict__ dout_ptr;
|
93 |
+
void *__restrict__ dA_ptr;
|
94 |
+
void *__restrict__ dB_ptr;
|
95 |
+
void *__restrict__ dC_ptr;
|
96 |
+
void *__restrict__ dD_ptr;
|
97 |
+
void *__restrict__ du_ptr;
|
98 |
+
void *__restrict__ dz_ptr;
|
99 |
+
void *__restrict__ ddelta_ptr;
|
100 |
+
void *__restrict__ ddelta_bias_ptr;
|
101 |
+
};
|
mamba/csrc/selective_scan/selective_scan_bwd_bf16_complex.cu
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
// Split into multiple files to compile in paralell
|
6 |
+
|
7 |
+
#include "selective_scan_bwd_kernel.cuh"
|
8 |
+
|
9 |
+
template void selective_scan_bwd_cuda<at::BFloat16, complex_t>(SSMParamsBwd ¶ms, cudaStream_t stream);
|
mamba/csrc/selective_scan/selective_scan_bwd_bf16_real.cu
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
// Split into multiple files to compile in paralell
|
6 |
+
|
7 |
+
#include "selective_scan_bwd_kernel.cuh"
|
8 |
+
|
9 |
+
template void selective_scan_bwd_cuda<at::BFloat16, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
|
mamba/csrc/selective_scan/selective_scan_bwd_fp16_complex.cu
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
// Split into multiple files to compile in paralell
|
6 |
+
|
7 |
+
#include "selective_scan_bwd_kernel.cuh"
|
8 |
+
|
9 |
+
template void selective_scan_bwd_cuda<at::Half, complex_t>(SSMParamsBwd ¶ms, cudaStream_t stream);
|
mamba/csrc/selective_scan/selective_scan_bwd_fp16_real.cu
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
// Split into multiple files to compile in paralell
|
6 |
+
|
7 |
+
#include "selective_scan_bwd_kernel.cuh"
|
8 |
+
|
9 |
+
template void selective_scan_bwd_cuda<at::Half, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
|
mamba/csrc/selective_scan/selective_scan_bwd_fp32_complex.cu
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
// Split into multiple files to compile in paralell
|
6 |
+
|
7 |
+
#include "selective_scan_bwd_kernel.cuh"
|
8 |
+
|
9 |
+
template void selective_scan_bwd_cuda<float, complex_t>(SSMParamsBwd ¶ms, cudaStream_t stream);
|
mamba/csrc/selective_scan/selective_scan_bwd_fp32_real.cu
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
// Split into multiple files to compile in paralell
|
6 |
+
|
7 |
+
#include "selective_scan_bwd_kernel.cuh"
|
8 |
+
|
9 |
+
template void selective_scan_bwd_cuda<float, float>(SSMParamsBwd ¶ms, cudaStream_t stream);
|
mamba/csrc/selective_scan/selective_scan_bwd_kernel.cuh
ADDED
@@ -0,0 +1,531 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
#include <c10/util/BFloat16.h>
|
8 |
+
#include <c10/util/Half.h>
|
9 |
+
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
|
10 |
+
#include <ATen/cuda/Atomic.cuh> // For atomicAdd on complex
|
11 |
+
|
12 |
+
#include <cub/block/block_load.cuh>
|
13 |
+
#include <cub/block/block_store.cuh>
|
14 |
+
#include <cub/block/block_scan.cuh>
|
15 |
+
#include <cub/block/block_reduce.cuh>
|
16 |
+
|
17 |
+
#include "selective_scan.h"
|
18 |
+
#include "selective_scan_common.h"
|
19 |
+
#include "reverse_scan.cuh"
|
20 |
+
#include "static_switch.h"
|
21 |
+
|
22 |
+
template<typename scalar_t> __device__ __forceinline__ scalar_t conj(scalar_t x);
|
23 |
+
template<> __device__ __forceinline__ float conj<float>(float x) { return x; }
|
24 |
+
template<> __device__ __forceinline__ complex_t conj<complex_t>(complex_t x) { return std::conj(x); }
|
25 |
+
|
26 |
+
template<int kNThreads_, int kNItems_, bool kIsEvenLen_, bool kIsVariableB_, bool kIsVariableC_,
|
27 |
+
bool kDeltaSoftplus_, bool kHasZ_, typename input_t_, typename weight_t_>
|
28 |
+
struct Selective_Scan_bwd_kernel_traits {
|
29 |
+
static_assert(kNItems_ % 4 == 0);
|
30 |
+
using input_t = input_t_;
|
31 |
+
using weight_t = weight_t_;
|
32 |
+
static constexpr int kNThreads = kNThreads_;
|
33 |
+
static constexpr int kNItems = kNItems_;
|
34 |
+
static constexpr int kNBytes = sizeof(input_t);
|
35 |
+
static_assert(kNBytes == 2 || kNBytes == 4);
|
36 |
+
static constexpr int kNElts = kNBytes == 4 ? 4 : std::min(8, kNItems);
|
37 |
+
static_assert(kNItems % kNElts == 0);
|
38 |
+
static constexpr int kNLoads = kNItems / kNElts;
|
39 |
+
static constexpr bool kIsComplex = std::is_same_v<weight_t, complex_t>;
|
40 |
+
static constexpr bool kIsEvenLen = kIsEvenLen_;
|
41 |
+
static constexpr bool kIsVariableB = kIsVariableB_;
|
42 |
+
static constexpr bool kIsVariableC = kIsVariableC_;
|
43 |
+
static constexpr bool kDeltaSoftplus = kDeltaSoftplus_;
|
44 |
+
static constexpr bool kHasZ = kHasZ_;
|
45 |
+
// Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads with float improves occupancy.
|
46 |
+
// For complex this would lead to massive register spilling, so we keep it at 2.
|
47 |
+
static constexpr int kMinBlocks = kNThreads == 128 && !kIsComplex ? 3 : 2;
|
48 |
+
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
|
49 |
+
using scan_t = std::conditional_t<!kIsComplex, float2, float4>;
|
50 |
+
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
51 |
+
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
52 |
+
using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, !kIsComplex ? kNItems : kNItems * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
53 |
+
using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, !kIsComplex ? kNLoads : kNLoads * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
54 |
+
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
|
55 |
+
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads, cub::BLOCK_STORE_WARP_TRANSPOSE>;
|
56 |
+
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>;
|
57 |
+
using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>;
|
58 |
+
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
|
59 |
+
using BlockReverseScanT = BlockReverseScan<scan_t, kNThreads>;
|
60 |
+
using BlockReduceT = cub::BlockReduce<scan_t, kNThreads>;
|
61 |
+
using BlockReduceFloatT = cub::BlockReduce<float, kNThreads>;
|
62 |
+
using BlockReduceComplexT = cub::BlockReduce<complex_t, kNThreads>;
|
63 |
+
using BlockExchangeT = cub::BlockExchange<float, kNThreads, !kIsComplex ? kNItems : kNItems * 2>;
|
64 |
+
static constexpr int kSmemIOSize = std::max({sizeof(typename BlockLoadT::TempStorage),
|
65 |
+
sizeof(typename BlockLoadVecT::TempStorage),
|
66 |
+
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage),
|
67 |
+
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage),
|
68 |
+
sizeof(typename BlockStoreT::TempStorage),
|
69 |
+
sizeof(typename BlockStoreVecT::TempStorage)});
|
70 |
+
static constexpr int kSmemExchangeSize = (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockExchangeT::TempStorage);
|
71 |
+
static constexpr int kSmemReduceSize = sizeof(typename BlockReduceT::TempStorage);
|
72 |
+
static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize + kSmemReduceSize + sizeof(typename BlockScanT::TempStorage) + sizeof(typename BlockReverseScanT::TempStorage);
|
73 |
+
};
|
74 |
+
|
75 |
+
template<typename Ktraits>
|
76 |
+
__global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks)
|
77 |
+
void selective_scan_bwd_kernel(SSMParamsBwd params) {
|
78 |
+
constexpr bool kIsComplex = Ktraits::kIsComplex;
|
79 |
+
constexpr bool kIsVariableB = Ktraits::kIsVariableB;
|
80 |
+
constexpr bool kIsVariableC = Ktraits::kIsVariableC;
|
81 |
+
constexpr bool kDeltaSoftplus = Ktraits::kDeltaSoftplus;
|
82 |
+
constexpr bool kHasZ = Ktraits::kHasZ;
|
83 |
+
constexpr int kNThreads = Ktraits::kNThreads;
|
84 |
+
constexpr int kNItems = Ktraits::kNItems;
|
85 |
+
using input_t = typename Ktraits::input_t;
|
86 |
+
using weight_t = typename Ktraits::weight_t;
|
87 |
+
using scan_t = typename Ktraits::scan_t;
|
88 |
+
|
89 |
+
// Shared memory.
|
90 |
+
extern __shared__ char smem_[];
|
91 |
+
// cast to lvalue reference of expected type
|
92 |
+
// char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
|
93 |
+
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t));
|
94 |
+
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
|
95 |
+
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
|
96 |
+
auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
|
97 |
+
auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
|
98 |
+
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
|
99 |
+
auto& smem_exchange = *reinterpret_cast<typename Ktraits::BlockExchangeT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
|
100 |
+
auto& smem_exchange1 = *reinterpret_cast<typename Ktraits::BlockExchangeT::TempStorage*>(smem_ + Ktraits::kSmemIOSize + sizeof(typename Ktraits::BlockExchangeT::TempStorage));
|
101 |
+
auto& smem_reduce = *reinterpret_cast<typename Ktraits::BlockReduceT::TempStorage*>(reinterpret_cast<char *>(&smem_exchange) + Ktraits::kSmemExchangeSize);
|
102 |
+
auto& smem_reduce_float = *reinterpret_cast<typename Ktraits::BlockReduceFloatT::TempStorage*>(&smem_reduce);
|
103 |
+
auto& smem_reduce_complex = *reinterpret_cast<typename Ktraits::BlockReduceComplexT::TempStorage*>(&smem_reduce);
|
104 |
+
auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(reinterpret_cast<char *>(&smem_reduce) + Ktraits::kSmemReduceSize);
|
105 |
+
auto& smem_reverse_scan = *reinterpret_cast<typename Ktraits::BlockReverseScanT::TempStorage*>(reinterpret_cast<char *>(&smem_scan) + sizeof(typename Ktraits::BlockScanT::TempStorage));
|
106 |
+
weight_t *smem_delta_a = reinterpret_cast<weight_t *>(smem_ + Ktraits::kSmemSize);
|
107 |
+
scan_t *smem_running_postfix = reinterpret_cast<scan_t *>(smem_delta_a + 2 * MAX_DSTATE + kNThreads);
|
108 |
+
weight_t *smem_da = reinterpret_cast<weight_t *>(smem_running_postfix + MAX_DSTATE);
|
109 |
+
weight_t *smem_dbc = reinterpret_cast<weight_t *>(smem_da + MAX_DSTATE);
|
110 |
+
|
111 |
+
const int batch_id = blockIdx.x;
|
112 |
+
const int dim_id = blockIdx.y;
|
113 |
+
const int group_id = dim_id / (params.dim_ngroups_ratio);
|
114 |
+
input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride
|
115 |
+
+ dim_id * params.u_d_stride;
|
116 |
+
input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride
|
117 |
+
+ dim_id * params.delta_d_stride;
|
118 |
+
input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride
|
119 |
+
+ dim_id * params.dout_d_stride;
|
120 |
+
weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * params.A_d_stride;
|
121 |
+
weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * params.B_d_stride;
|
122 |
+
input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride;
|
123 |
+
weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * params.C_d_stride;
|
124 |
+
input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride;
|
125 |
+
weight_t *dA = reinterpret_cast<weight_t *>(params.dA_ptr) + dim_id * params.dA_d_stride;
|
126 |
+
weight_t *dB = reinterpret_cast<weight_t *>(params.dB_ptr)
|
127 |
+
+ (!kIsVariableB ? dim_id * params.dB_d_stride : batch_id * (!kIsComplex ? params.dB_batch_stride : params.dB_batch_stride / 2) + group_id * params.dB_group_stride);
|
128 |
+
weight_t *dC = reinterpret_cast<weight_t *>(params.dC_ptr)
|
129 |
+
+ (!kIsVariableC ? dim_id * params.dC_d_stride : batch_id * (!kIsComplex ? params.dC_batch_stride : params.dC_batch_stride / 2) + group_id * params.dC_group_stride);
|
130 |
+
float *dD = params.dD_ptr == nullptr ? nullptr : reinterpret_cast<float *>(params.dD_ptr) + dim_id;
|
131 |
+
float D_val = params.D_ptr == nullptr ? 0 : reinterpret_cast<float *>(params.D_ptr)[dim_id];
|
132 |
+
float *ddelta_bias = params.ddelta_bias_ptr == nullptr ? nullptr : reinterpret_cast<float *>(params.ddelta_bias_ptr) + dim_id;
|
133 |
+
float delta_bias = params.delta_bias_ptr == nullptr ? 0 : reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id];
|
134 |
+
scan_t *x = params.x_ptr == nullptr
|
135 |
+
? nullptr
|
136 |
+
: reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id) * (params.n_chunks) * params.dstate;
|
137 |
+
float dD_val = 0;
|
138 |
+
float ddelta_bias_val = 0;
|
139 |
+
|
140 |
+
constexpr int kChunkSize = kNThreads * kNItems;
|
141 |
+
u += (params.n_chunks - 1) * kChunkSize;
|
142 |
+
delta += (params.n_chunks - 1) * kChunkSize;
|
143 |
+
dout += (params.n_chunks - 1) * kChunkSize;
|
144 |
+
Bvar += (params.n_chunks - 1) * kChunkSize * (!kIsComplex ? 1 : 2);
|
145 |
+
Cvar += (params.n_chunks - 1) * kChunkSize * (!kIsComplex ? 1 : 2);
|
146 |
+
for (int chunk = params.n_chunks - 1; chunk >= 0; --chunk) {
|
147 |
+
input_t u_vals[kNItems];
|
148 |
+
input_t delta_vals_load[kNItems];
|
149 |
+
input_t dout_vals_load[kNItems];
|
150 |
+
__syncthreads();
|
151 |
+
load_input<Ktraits>(u, u_vals, smem_load, params.seqlen - chunk * kChunkSize);
|
152 |
+
u -= kChunkSize;
|
153 |
+
__syncthreads();
|
154 |
+
load_input<Ktraits>(delta, delta_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
|
155 |
+
// Will reload delta at the same location if kDeltaSoftplus
|
156 |
+
if constexpr (!kDeltaSoftplus) { delta -= kChunkSize; }
|
157 |
+
__syncthreads();
|
158 |
+
load_input<Ktraits>(dout, dout_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
|
159 |
+
dout -= kChunkSize;
|
160 |
+
|
161 |
+
float dout_vals[kNItems], delta_vals[kNItems];
|
162 |
+
#pragma unroll
|
163 |
+
for (int i = 0; i < kNItems; ++i) {
|
164 |
+
dout_vals[i] = float(dout_vals_load[i]);
|
165 |
+
delta_vals[i] = float(delta_vals_load[i]) + delta_bias;
|
166 |
+
if constexpr (kDeltaSoftplus) {
|
167 |
+
delta_vals[i] = delta_vals[i] <= 20.f ? log1pf(expf(delta_vals[i])) : delta_vals[i];
|
168 |
+
}
|
169 |
+
}
|
170 |
+
|
171 |
+
if constexpr (kHasZ) {
|
172 |
+
input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride
|
173 |
+
+ dim_id * params.z_d_stride + chunk * kChunkSize;
|
174 |
+
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
|
175 |
+
+ dim_id * params.out_d_stride + chunk * kChunkSize;
|
176 |
+
input_t *dz = reinterpret_cast<input_t *>(params.dz_ptr) + batch_id * params.dz_batch_stride
|
177 |
+
+ dim_id * params.dz_d_stride + chunk * kChunkSize;
|
178 |
+
input_t z_vals[kNItems], out_vals[kNItems];
|
179 |
+
__syncthreads();
|
180 |
+
load_input<Ktraits>(z, z_vals, smem_load, params.seqlen - chunk * kChunkSize);
|
181 |
+
__syncthreads();
|
182 |
+
load_input<Ktraits>(out, out_vals, smem_load, params.seqlen - chunk * kChunkSize);
|
183 |
+
float dz_vals[kNItems], z_silu_vals[kNItems];
|
184 |
+
#pragma unroll
|
185 |
+
for (int i = 0; i < kNItems; ++i) {
|
186 |
+
float z_val = z_vals[i];
|
187 |
+
float z_sigmoid_val = 1.0f / (1.0f + expf(-z_val));
|
188 |
+
z_silu_vals[i] = z_val * z_sigmoid_val;
|
189 |
+
dz_vals[i] = dout_vals[i] * float(out_vals[i]) * z_sigmoid_val
|
190 |
+
* (1.0f + z_val * (1.0f - z_sigmoid_val));
|
191 |
+
dout_vals[i] *= z_silu_vals[i];
|
192 |
+
}
|
193 |
+
__syncthreads();
|
194 |
+
store_output<Ktraits>(dz, dz_vals, smem_store, params.seqlen - chunk * kChunkSize);
|
195 |
+
if (params.out_z_ptr != nullptr) { // Recompute and store out_z
|
196 |
+
float out_z_vals[kNItems];
|
197 |
+
#pragma unroll
|
198 |
+
for (int i = 0; i < kNItems; ++i) { out_z_vals[i] = float(out_vals[i]) * z_silu_vals[i]; }
|
199 |
+
// if (blockIdx.x == 0 && blockIdx.y == 0 && threadIdx.x == 0) {
|
200 |
+
// printf("out_val=%f, z_silu_val = %f, out_z_val = %f\n", float(out_vals[0]), z_silu_vals[0], out_z_vals[0]);
|
201 |
+
// }
|
202 |
+
input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride
|
203 |
+
+ dim_id * params.out_z_d_stride + chunk * kChunkSize;
|
204 |
+
__syncthreads();
|
205 |
+
store_output<Ktraits>(out_z, out_z_vals, smem_store, params.seqlen - chunk * kChunkSize);
|
206 |
+
}
|
207 |
+
}
|
208 |
+
|
209 |
+
float du_vals[kNItems];
|
210 |
+
#pragma unroll
|
211 |
+
for (int i = 0; i < kNItems; ++i) { du_vals[i] = D_val * dout_vals[i]; }
|
212 |
+
#pragma unroll
|
213 |
+
for (int i = 0; i < kNItems; ++i) { dD_val += dout_vals[i] * float(u_vals[i]); }
|
214 |
+
|
215 |
+
float ddelta_vals[kNItems] = {0};
|
216 |
+
__syncthreads();
|
217 |
+
for (int state_idx = 0; state_idx < params.dstate; ++state_idx) {
|
218 |
+
const weight_t A_val = A[state_idx * params.A_dstate_stride];
|
219 |
+
// Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
|
220 |
+
weight_t A_scaled;
|
221 |
+
constexpr float kLog2e = M_LOG2E;
|
222 |
+
if constexpr (!kIsComplex) {
|
223 |
+
A_scaled = A_val * kLog2e;
|
224 |
+
} else {
|
225 |
+
A_scaled = complex_t(A_val.real_ * kLog2e, A_val.imag_);
|
226 |
+
}
|
227 |
+
weight_t B_val, C_val;
|
228 |
+
weight_t B_vals[kNItems], C_vals[kNItems];
|
229 |
+
if constexpr (!kIsVariableB) {
|
230 |
+
B_val = B[state_idx * params.B_dstate_stride];
|
231 |
+
} else {
|
232 |
+
load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals,
|
233 |
+
smem_load_weight, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
|
234 |
+
}
|
235 |
+
if constexpr (!kIsVariableC) {
|
236 |
+
C_val = C[state_idx * params.C_dstate_stride];
|
237 |
+
} else {
|
238 |
+
auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1;
|
239 |
+
load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals,
|
240 |
+
smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
|
241 |
+
}
|
242 |
+
// const weight_t A_val = smem_a[state_idx];
|
243 |
+
scan_t thread_data[kNItems], thread_reverse_data[kNItems];
|
244 |
+
if constexpr (!kIsComplex) {
|
245 |
+
#pragma unroll
|
246 |
+
for (int i = 0; i < kNItems; ++i) {
|
247 |
+
const float delta_a_exp = exp2f(delta_vals[i] * A_scaled);
|
248 |
+
thread_data[i] = make_float2(delta_a_exp, !kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]);
|
249 |
+
if (i == 0) {
|
250 |
+
smem_delta_a[threadIdx.x == 0 ? state_idx + (chunk % 2) * MAX_DSTATE : threadIdx.x + 2 * MAX_DSTATE] = delta_a_exp;
|
251 |
+
} else {
|
252 |
+
thread_reverse_data[i - 1].x = delta_a_exp;
|
253 |
+
}
|
254 |
+
thread_reverse_data[i].y = dout_vals[i] *
|
255 |
+
(!kIsVariableC
|
256 |
+
? (!kIsVariableB ? B_val * C_val : C_val)
|
257 |
+
: (!kIsVariableB ? B_val * C_vals[i] : C_vals[i]));
|
258 |
+
}
|
259 |
+
__syncthreads();
|
260 |
+
thread_reverse_data[kNItems - 1].x = threadIdx.x == kNThreads - 1
|
261 |
+
? (chunk == params.n_chunks - 1 ? 1.f : smem_delta_a[state_idx + ((chunk + 1) % 2) * MAX_DSTATE])
|
262 |
+
: smem_delta_a[threadIdx.x + 1 + 2 * MAX_DSTATE];
|
263 |
+
// Initialize running total
|
264 |
+
scan_t running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? x[(chunk - 1) * params.dstate + state_idx] : make_float2(1.f, 0.f);
|
265 |
+
SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
|
266 |
+
Ktraits::BlockScanT(smem_scan).InclusiveScan(
|
267 |
+
thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
|
268 |
+
);
|
269 |
+
scan_t running_postfix = chunk < params.n_chunks - 1 && threadIdx.x % 32 == 0 ? smem_running_postfix[state_idx] : make_float2(1.f, 0.f);
|
270 |
+
SSMScanPrefixCallbackOp<weight_t> postfix_op(running_postfix);
|
271 |
+
Ktraits::BlockReverseScanT(smem_reverse_scan).InclusiveReverseScan(
|
272 |
+
thread_reverse_data, thread_reverse_data, SSMScanOp<weight_t>(), postfix_op
|
273 |
+
);
|
274 |
+
if (threadIdx.x == 0) { smem_running_postfix[state_idx] = postfix_op.running_prefix; }
|
275 |
+
weight_t dA_val = 0, dBC_val = 0;
|
276 |
+
weight_t dB_vals[kNItems], dC_vals[kNItems];
|
277 |
+
#pragma unroll
|
278 |
+
for (int i = 0; i < kNItems; ++i) {
|
279 |
+
const float dx = thread_reverse_data[i].y;
|
280 |
+
const float ddelta_u = !kIsVariableB ? dx : dx * B_vals[i];
|
281 |
+
du_vals[i] += ddelta_u * delta_vals[i];
|
282 |
+
const float a = thread_data[i].y - (!kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]);
|
283 |
+
ddelta_vals[i] += ddelta_u * float(u_vals[i]) + dx * A_val * a;
|
284 |
+
dA_val += dx * delta_vals[i] * a;
|
285 |
+
if constexpr (!kIsVariableB || !kIsVariableC) {
|
286 |
+
if constexpr (!kIsVariableB) { // dBC_val is dB_val
|
287 |
+
dBC_val += dout_vals[i] * (!kIsVariableC ? thread_data[i].y : thread_data[i].y * C_vals[i]);
|
288 |
+
} else { // dBC_val is dC_val
|
289 |
+
dBC_val += dout_vals[i] * thread_data[i].y;
|
290 |
+
}
|
291 |
+
}
|
292 |
+
if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
|
293 |
+
if constexpr (kIsVariableC) {
|
294 |
+
dC_vals[i] = dout_vals[i] * (!kIsVariableB ? thread_data[i].y * B_val : thread_data[i].y);
|
295 |
+
}
|
296 |
+
}
|
297 |
+
// Block-exchange to make the atomicAdd's coalesced, otherwise they're much slower
|
298 |
+
if constexpr (kIsVariableB || kIsVariableC) {
|
299 |
+
if constexpr (kIsVariableB) {
|
300 |
+
Ktraits::BlockExchangeT(smem_exchange).BlockedToStriped(dB_vals, dB_vals);
|
301 |
+
}
|
302 |
+
if constexpr (kIsVariableC) {
|
303 |
+
auto &smem_exchange_C = !kIsVariableB ? smem_exchange : smem_exchange1;
|
304 |
+
Ktraits::BlockExchangeT(smem_exchange_C).BlockedToStriped(dC_vals, dC_vals);
|
305 |
+
}
|
306 |
+
const int seqlen_remaining = params.seqlen - chunk * kChunkSize - threadIdx.x;
|
307 |
+
weight_t *dB_cur = dB + state_idx * params.dB_dstate_stride + chunk * kChunkSize + threadIdx.x;
|
308 |
+
weight_t *dC_cur = dC + state_idx * params.dC_dstate_stride + chunk * kChunkSize + threadIdx.x;
|
309 |
+
#pragma unroll
|
310 |
+
for (int i = 0; i < kNItems; ++i) {
|
311 |
+
if (i * kNThreads < seqlen_remaining) {
|
312 |
+
if constexpr (kIsVariableB) { gpuAtomicAdd(dB_cur + i * kNThreads, dB_vals[i]); }
|
313 |
+
if constexpr (kIsVariableC) { gpuAtomicAdd(dC_cur + i * kNThreads, dC_vals[i]); }
|
314 |
+
}
|
315 |
+
}
|
316 |
+
}
|
317 |
+
if constexpr (!kIsVariableB || !kIsVariableC) {
|
318 |
+
float2 dA_dBC_val = make_float2(dA_val, dBC_val);
|
319 |
+
dA_dBC_val = Ktraits::BlockReduceT(smem_reduce).Sum(dA_dBC_val);
|
320 |
+
dA_val = dA_dBC_val.x;
|
321 |
+
if (threadIdx.x == 0) {
|
322 |
+
smem_dbc[state_idx] = chunk == params.n_chunks - 1 ? dA_dBC_val.y : dA_dBC_val.y + smem_dbc[state_idx];
|
323 |
+
}
|
324 |
+
} else {
|
325 |
+
dA_val = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dA_val);
|
326 |
+
}
|
327 |
+
if (threadIdx.x == 0) {
|
328 |
+
smem_da[state_idx] = chunk == params.n_chunks - 1 ? dA_val : dA_val + smem_da[state_idx];
|
329 |
+
}
|
330 |
+
} else {
|
331 |
+
#pragma unroll
|
332 |
+
for (int i = 0; i < kNItems; ++i) {
|
333 |
+
// Pytorch's implementation of complex exp (which calls thrust) is very slow
|
334 |
+
complex_t delta_a_exp = cexp2f(delta_vals[i] * A_scaled);
|
335 |
+
weight_t B_delta_u_val = !kIsVariableB ? delta_vals[i] * float(u_vals[i]) : B_vals[i] * delta_vals[i] * float(u_vals[i]);
|
336 |
+
thread_data[i] = make_float4(delta_a_exp.real_, delta_a_exp.imag_, B_delta_u_val.real_, B_delta_u_val.imag_);
|
337 |
+
if (i == 0) {
|
338 |
+
smem_delta_a[threadIdx.x == 0 ? state_idx + (chunk % 2) * MAX_DSTATE : threadIdx.x + 2 * MAX_DSTATE] = delta_a_exp;
|
339 |
+
} else {
|
340 |
+
thread_reverse_data[i - 1].x = delta_a_exp.real_;
|
341 |
+
thread_reverse_data[i - 1].y = -delta_a_exp.imag_;
|
342 |
+
}
|
343 |
+
complex_t dout_BC = 2 * dout_vals[i]
|
344 |
+
* conj(!kIsVariableC
|
345 |
+
? (!kIsVariableB ? B_val * C_val : C_val)
|
346 |
+
: (!kIsVariableB ? B_val * C_vals[i] : C_vals[i]));
|
347 |
+
thread_reverse_data[i].z = dout_BC.real_;
|
348 |
+
thread_reverse_data[i].w = dout_BC.imag_;
|
349 |
+
}
|
350 |
+
__syncthreads();
|
351 |
+
complex_t delta_a_exp = threadIdx.x == kNThreads - 1
|
352 |
+
? (chunk == params.n_chunks - 1 ? 1.f : smem_delta_a[state_idx + ((chunk + 1) % 2) * MAX_DSTATE])
|
353 |
+
: smem_delta_a[threadIdx.x + 1 + 2 * MAX_DSTATE];
|
354 |
+
thread_reverse_data[kNItems - 1].x = delta_a_exp.real_;
|
355 |
+
thread_reverse_data[kNItems - 1].y = -delta_a_exp.imag_;
|
356 |
+
// Initialize running total
|
357 |
+
scan_t running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? x[(chunk - 1) * params.dstate + state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
|
358 |
+
SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
|
359 |
+
Ktraits::BlockScanT(smem_scan).InclusiveScan(
|
360 |
+
thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
|
361 |
+
);
|
362 |
+
scan_t running_postfix = chunk < params.n_chunks - 1 && threadIdx.x % 32 == 0 ? smem_running_postfix[state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
|
363 |
+
SSMScanPrefixCallbackOp<weight_t> postfix_op(running_postfix);
|
364 |
+
Ktraits::BlockReverseScanT(smem_reverse_scan).InclusiveReverseScan(
|
365 |
+
thread_reverse_data, thread_reverse_data, SSMScanOp<weight_t>(), postfix_op
|
366 |
+
);
|
367 |
+
if (threadIdx.x == 0) { smem_running_postfix[state_idx] = postfix_op.running_prefix; }
|
368 |
+
weight_t dA_val = 0, dBC_val = 0;
|
369 |
+
weight_t dB_vals[kNItems], dC_vals[kNItems];
|
370 |
+
#pragma unroll
|
371 |
+
for (int i = 0; i < kNItems; ++i) {
|
372 |
+
complex_t x = complex_t(thread_data[i].z, thread_data[i].w);
|
373 |
+
complex_t dx = complex_t(thread_reverse_data[i].z, thread_reverse_data[i].w);
|
374 |
+
float ddelta_u = !kIsVariableB ? dx.real_ : (dx * conj(B_vals[i])).real_;
|
375 |
+
if constexpr (!kIsVariableB || !kIsVariableC) {
|
376 |
+
if constexpr (!kIsVariableB) { // dBC_val is dB_val
|
377 |
+
dBC_val += (2 * dout_vals[i]) * conj(!kIsVariableC ? x : x * C_vals[i]);
|
378 |
+
} else { // dBC_val is dC_val
|
379 |
+
dBC_val += (2 * dout_vals[i]) * conj(x);
|
380 |
+
}
|
381 |
+
}
|
382 |
+
const complex_t a_conj = conj(x - (!kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]));
|
383 |
+
du_vals[i] += ddelta_u * delta_vals[i];
|
384 |
+
ddelta_vals[i] += ddelta_u * float(u_vals[i]) + (dx * conj(A_val) * a_conj).real_;
|
385 |
+
dA_val += delta_vals[i] * dx * a_conj;
|
386 |
+
if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
|
387 |
+
if constexpr (kIsVariableC) {
|
388 |
+
dC_vals[i] = (2 * dout_vals[i]) * conj(!kIsVariableB ? x * B_val : x);
|
389 |
+
}
|
390 |
+
}
|
391 |
+
// Block-exchange to make the atomicAdd's coalesced, otherwise they're much slower
|
392 |
+
if constexpr (kIsVariableB || kIsVariableC) {
|
393 |
+
float dB_vals_f[kNItems * 2], dC_vals_f[kNItems * 2];
|
394 |
+
if constexpr (kIsVariableB) {
|
395 |
+
#pragma unroll
|
396 |
+
for (int i = 0; i < kNItems; ++i) {
|
397 |
+
dB_vals_f[i * 2] = dB_vals[i].real_;
|
398 |
+
dB_vals_f[i * 2 + 1] = dB_vals[i].imag_;
|
399 |
+
}
|
400 |
+
Ktraits::BlockExchangeT(smem_exchange).BlockedToStriped(dB_vals_f, dB_vals_f);
|
401 |
+
}
|
402 |
+
if constexpr (kIsVariableC) {
|
403 |
+
#pragma unroll
|
404 |
+
for (int i = 0; i < kNItems; ++i) {
|
405 |
+
dC_vals_f[i * 2] = dC_vals[i].real_;
|
406 |
+
dC_vals_f[i * 2 + 1] = dC_vals[i].imag_;
|
407 |
+
}
|
408 |
+
auto &smem_exchange_C = !kIsVariableB ? smem_exchange : smem_exchange1;
|
409 |
+
Ktraits::BlockExchangeT(smem_exchange_C).BlockedToStriped(dC_vals_f, dC_vals_f);
|
410 |
+
}
|
411 |
+
const int seqlen_remaining = (params.seqlen - chunk * kChunkSize) * 2 - threadIdx.x;
|
412 |
+
float *dB_cur = reinterpret_cast<float *>(dB) + state_idx * params.dB_dstate_stride + chunk * kChunkSize * 2 + threadIdx.x;
|
413 |
+
float *dC_cur = reinterpret_cast<float *>(dC) + state_idx * params.dC_dstate_stride + chunk * kChunkSize * 2 + threadIdx.x;
|
414 |
+
#pragma unroll
|
415 |
+
for (int i = 0; i < kNItems * 2; ++i) {
|
416 |
+
if (i * kNThreads < seqlen_remaining) {
|
417 |
+
if constexpr (kIsVariableB) { gpuAtomicAdd(dB_cur + i * kNThreads, dB_vals_f[i]); }
|
418 |
+
if constexpr (kIsVariableC) { gpuAtomicAdd(dC_cur + i * kNThreads, dC_vals_f[i]); }
|
419 |
+
}
|
420 |
+
}
|
421 |
+
}
|
422 |
+
if constexpr (!kIsVariableB || !kIsVariableC) {
|
423 |
+
float4 dA_dBC_val = make_float4(dA_val.real_, dA_val.imag_, dBC_val.real_, dBC_val.imag_);
|
424 |
+
dA_dBC_val = Ktraits::BlockReduceT(smem_reduce).Sum(dA_dBC_val);
|
425 |
+
dA_val = complex_t(dA_dBC_val.x, dA_dBC_val.y);
|
426 |
+
dBC_val = complex_t(dA_dBC_val.z, dA_dBC_val.w);
|
427 |
+
if (threadIdx.x == 0) {
|
428 |
+
smem_dbc[state_idx] = chunk == params.n_chunks - 1 ? dBC_val : dBC_val + smem_dbc[state_idx];
|
429 |
+
}
|
430 |
+
} else {
|
431 |
+
dA_val = Ktraits::BlockReduceComplexT(smem_reduce_complex).Sum(dA_val);
|
432 |
+
}
|
433 |
+
if (threadIdx.x == 0) {
|
434 |
+
smem_da[state_idx] = chunk == params.n_chunks - 1 ? dA_val : dA_val + smem_da[state_idx];
|
435 |
+
}
|
436 |
+
}
|
437 |
+
}
|
438 |
+
|
439 |
+
if constexpr (kDeltaSoftplus) {
|
440 |
+
__syncthreads();
|
441 |
+
input_t delta_vals_load[kNItems];
|
442 |
+
load_input<Ktraits>(delta, delta_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
|
443 |
+
delta -= kChunkSize;
|
444 |
+
#pragma unroll
|
445 |
+
for (int i = 0; i < kNItems; ++i) {
|
446 |
+
float delta_val = float(delta_vals_load[i]) + delta_bias;
|
447 |
+
float delta_val_neg_exp = expf(-delta_val);
|
448 |
+
ddelta_vals[i] = delta_val <= 20.f
|
449 |
+
? ddelta_vals[i] / (1.f + delta_val_neg_exp)
|
450 |
+
: ddelta_vals[i];
|
451 |
+
}
|
452 |
+
}
|
453 |
+
for (int i = 0; i < kNItems; ++i) { ddelta_bias_val += ddelta_vals[i]; }
|
454 |
+
|
455 |
+
input_t *du = reinterpret_cast<input_t *>(params.du_ptr) + batch_id * params.du_batch_stride
|
456 |
+
+ dim_id * params.du_d_stride + chunk * kChunkSize;
|
457 |
+
input_t *ddelta = reinterpret_cast<input_t *>(params.ddelta_ptr) + batch_id * params.ddelta_batch_stride
|
458 |
+
+ dim_id * params.ddelta_d_stride + chunk * kChunkSize;
|
459 |
+
__syncthreads();
|
460 |
+
store_output<Ktraits>(du, du_vals, smem_store, params.seqlen - chunk * kChunkSize);
|
461 |
+
__syncthreads();
|
462 |
+
store_output<Ktraits>(ddelta, ddelta_vals, smem_store, params.seqlen - chunk * kChunkSize);
|
463 |
+
|
464 |
+
Bvar -= kChunkSize * (!kIsComplex ? 1 : 2);
|
465 |
+
Cvar -= kChunkSize * (!kIsComplex ? 1 : 2);
|
466 |
+
}
|
467 |
+
if (params.dD_ptr != nullptr) {
|
468 |
+
dD_val = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dD_val);
|
469 |
+
if (threadIdx.x == 0) { gpuAtomicAdd(dD, dD_val); }
|
470 |
+
}
|
471 |
+
if (params.ddelta_bias_ptr != nullptr) {
|
472 |
+
__syncthreads();
|
473 |
+
ddelta_bias_val = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(ddelta_bias_val);
|
474 |
+
if (threadIdx.x == 0) { gpuAtomicAdd(ddelta_bias, ddelta_bias_val); }
|
475 |
+
}
|
476 |
+
for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) {
|
477 |
+
gpuAtomicAdd(&(dA[state_idx * params.dA_dstate_stride]), smem_da[state_idx]);
|
478 |
+
weight_t dBC_val;
|
479 |
+
if (!kIsVariableB || !kIsVariableC) { dBC_val = smem_dbc[state_idx]; }
|
480 |
+
if constexpr (!kIsVariableB) {
|
481 |
+
gpuAtomicAdd(&(dB[state_idx * params.dB_dstate_stride]),
|
482 |
+
!kIsVariableC ? dBC_val * conj(C[state_idx * params.C_dstate_stride]) : dBC_val);
|
483 |
+
}
|
484 |
+
if constexpr (!kIsVariableC) {
|
485 |
+
gpuAtomicAdd(&(dC[state_idx * params.dC_dstate_stride]),
|
486 |
+
!kIsVariableB ? dBC_val * conj(B[state_idx * params.B_dstate_stride]) : dBC_val);
|
487 |
+
}
|
488 |
+
}
|
489 |
+
}
|
490 |
+
|
491 |
+
template<int kNThreads, int kNItems, typename input_t, typename weight_t>
|
492 |
+
void selective_scan_bwd_launch(SSMParamsBwd ¶ms, cudaStream_t stream) {
|
493 |
+
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
|
494 |
+
BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] {
|
495 |
+
BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] {
|
496 |
+
BOOL_SWITCH(params.delta_softplus, kDeltaSoftplus, [&] {
|
497 |
+
BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
|
498 |
+
using Ktraits = Selective_Scan_bwd_kernel_traits<kNThreads, kNItems, kIsEvenLen, kIsVariableB, kIsVariableC, kDeltaSoftplus, kHasZ, input_t, weight_t>;
|
499 |
+
// using Ktraits = Selective_Scan_bwd_kernel_traits<kNThreads, kNItems, true, kIsVariableB, kIsVariableC, kDeltaSoftplus, kHasZ, input_t, weight_t>;
|
500 |
+
// TODO: check this
|
501 |
+
constexpr int kSmemSize = Ktraits::kSmemSize + MAX_DSTATE * sizeof(typename Ktraits::scan_t) + (kNThreads + 4 * MAX_DSTATE) * sizeof(typename Ktraits::weight_t);
|
502 |
+
// printf("smem_size = %d\n", kSmemSize);
|
503 |
+
dim3 grid(params.batch, params.dim);
|
504 |
+
auto kernel = &selective_scan_bwd_kernel<Ktraits>;
|
505 |
+
if (kSmemSize >= 48 * 1024) {
|
506 |
+
C10_CUDA_CHECK(cudaFuncSetAttribute(
|
507 |
+
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
|
508 |
+
}
|
509 |
+
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
|
510 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
511 |
+
});
|
512 |
+
});
|
513 |
+
});
|
514 |
+
});
|
515 |
+
});
|
516 |
+
}
|
517 |
+
|
518 |
+
template<typename input_t, typename weight_t>
|
519 |
+
void selective_scan_bwd_cuda(SSMParamsBwd ¶ms, cudaStream_t stream) {
|
520 |
+
if (params.seqlen <= 128) {
|
521 |
+
selective_scan_bwd_launch<32, 4, input_t, weight_t>(params, stream);
|
522 |
+
} else if (params.seqlen <= 256) {
|
523 |
+
selective_scan_bwd_launch<32, 8, input_t, weight_t>(params, stream);
|
524 |
+
} else if (params.seqlen <= 512) {
|
525 |
+
selective_scan_bwd_launch<32, 16, input_t, weight_t>(params, stream);
|
526 |
+
} else if (params.seqlen <= 1024) {
|
527 |
+
selective_scan_bwd_launch<64, 16, input_t, weight_t>(params, stream);
|
528 |
+
} else {
|
529 |
+
selective_scan_bwd_launch<128, 16, input_t, weight_t>(params, stream);
|
530 |
+
}
|
531 |
+
}
|
mamba/csrc/selective_scan/selective_scan_common.h
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
#include <cuda_bf16.h>
|
8 |
+
#include <cuda_fp16.h>
|
9 |
+
#include <c10/util/complex.h> // For scalar_value_type
|
10 |
+
|
11 |
+
#define MAX_DSTATE 256
|
12 |
+
|
13 |
+
using complex_t = c10::complex<float>;
|
14 |
+
|
15 |
+
inline __device__ float2 operator+(const float2 & a, const float2 & b){
|
16 |
+
return {a.x + b.x, a.y + b.y};
|
17 |
+
}
|
18 |
+
|
19 |
+
inline __device__ float3 operator+(const float3 &a, const float3 &b) {
|
20 |
+
return {a.x + b.x, a.y + b.y, a.z + b.z};
|
21 |
+
}
|
22 |
+
|
23 |
+
inline __device__ float4 operator+(const float4 & a, const float4 & b){
|
24 |
+
return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w};
|
25 |
+
}
|
26 |
+
|
27 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
28 |
+
|
29 |
+
template<int BYTES> struct BytesToType {};
|
30 |
+
|
31 |
+
template<> struct BytesToType<16> {
|
32 |
+
using Type = uint4;
|
33 |
+
static_assert(sizeof(Type) == 16);
|
34 |
+
};
|
35 |
+
|
36 |
+
template<> struct BytesToType<8> {
|
37 |
+
using Type = uint64_t;
|
38 |
+
static_assert(sizeof(Type) == 8);
|
39 |
+
};
|
40 |
+
|
41 |
+
template<> struct BytesToType<4> {
|
42 |
+
using Type = uint32_t;
|
43 |
+
static_assert(sizeof(Type) == 4);
|
44 |
+
};
|
45 |
+
|
46 |
+
template<> struct BytesToType<2> {
|
47 |
+
using Type = uint16_t;
|
48 |
+
static_assert(sizeof(Type) == 2);
|
49 |
+
};
|
50 |
+
|
51 |
+
template<> struct BytesToType<1> {
|
52 |
+
using Type = uint8_t;
|
53 |
+
static_assert(sizeof(Type) == 1);
|
54 |
+
};
|
55 |
+
|
56 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
57 |
+
|
58 |
+
template<typename scalar_t, int N>
|
59 |
+
struct Converter{
|
60 |
+
static inline __device__ void to_float(const scalar_t (&src)[N], float (&dst)[N]) {
|
61 |
+
#pragma unroll
|
62 |
+
for (int i = 0; i < N; ++i) { dst[i] = src[i]; }
|
63 |
+
}
|
64 |
+
};
|
65 |
+
|
66 |
+
template<int N>
|
67 |
+
struct Converter<at::Half, N>{
|
68 |
+
static inline __device__ void to_float(const at::Half (&src)[N], float (&dst)[N]) {
|
69 |
+
static_assert(N % 2 == 0);
|
70 |
+
auto &src2 = reinterpret_cast<const half2 (&)[N / 2]>(src);
|
71 |
+
auto &dst2 = reinterpret_cast<float2 (&)[N / 2]>(dst);
|
72 |
+
#pragma unroll
|
73 |
+
for (int i = 0; i < N / 2; ++i) { dst2[i] = __half22float2(src2[i]); }
|
74 |
+
}
|
75 |
+
};
|
76 |
+
|
77 |
+
#if __CUDA_ARCH__ >= 800
|
78 |
+
template<int N>
|
79 |
+
struct Converter<at::BFloat16, N>{
|
80 |
+
static inline __device__ void to_float(const at::BFloat16 (&src)[N], float (&dst)[N]) {
|
81 |
+
static_assert(N % 2 == 0);
|
82 |
+
auto &src2 = reinterpret_cast<const nv_bfloat162 (&)[N / 2]>(src);
|
83 |
+
auto &dst2 = reinterpret_cast<float2 (&)[N / 2]>(dst);
|
84 |
+
#pragma unroll
|
85 |
+
for (int i = 0; i < N / 2; ++i) { dst2[i] = __bfloat1622float2(src2[i]); }
|
86 |
+
}
|
87 |
+
};
|
88 |
+
#endif
|
89 |
+
|
90 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
91 |
+
|
92 |
+
// From https://stackoverflow.com/questions/9860711/cucomplex-h-and-exp
|
93 |
+
// and https://forums.developer.nvidia.com/t/complex-number-exponential-function/24696
|
94 |
+
__device__ __forceinline__ complex_t cexp2f(complex_t z) {
|
95 |
+
float t = exp2f(z.real_);
|
96 |
+
float c, s;
|
97 |
+
sincosf(z.imag_, &s, &c);
|
98 |
+
return complex_t(c * t, s * t);
|
99 |
+
}
|
100 |
+
|
101 |
+
__device__ __forceinline__ complex_t cexpf(complex_t z) {
|
102 |
+
float t = expf(z.real_);
|
103 |
+
float c, s;
|
104 |
+
sincosf(z.imag_, &s, &c);
|
105 |
+
return complex_t(c * t, s * t);
|
106 |
+
}
|
107 |
+
|
108 |
+
template<typename scalar_t> struct SSMScanOp;
|
109 |
+
|
110 |
+
template<>
|
111 |
+
struct SSMScanOp<float> {
|
112 |
+
__device__ __forceinline__ float2 operator()(const float2 &ab0, const float2 &ab1) const {
|
113 |
+
return make_float2(ab1.x * ab0.x, ab1.x * ab0.y + ab1.y);
|
114 |
+
}
|
115 |
+
};
|
116 |
+
|
117 |
+
template<>
|
118 |
+
struct SSMScanOp<complex_t> {
|
119 |
+
__device__ __forceinline__ float4 operator()(const float4 &ab0, const float4 &ab1) const {
|
120 |
+
complex_t a0 = complex_t(ab0.x, ab0.y);
|
121 |
+
complex_t b0 = complex_t(ab0.z, ab0.w);
|
122 |
+
complex_t a1 = complex_t(ab1.x, ab1.y);
|
123 |
+
complex_t b1 = complex_t(ab1.z, ab1.w);
|
124 |
+
complex_t out_a = a1 * a0;
|
125 |
+
complex_t out_b = a1 * b0 + b1;
|
126 |
+
return make_float4(out_a.real_, out_a.imag_, out_b.real_, out_b.imag_);
|
127 |
+
}
|
128 |
+
};
|
129 |
+
|
130 |
+
// A stateful callback functor that maintains a running prefix to be applied
|
131 |
+
// during consecutive scan operations.
|
132 |
+
template <typename scalar_t> struct SSMScanPrefixCallbackOp {
|
133 |
+
using scan_t = std::conditional_t<std::is_same_v<scalar_t, float>, float2, float4>;
|
134 |
+
scan_t running_prefix;
|
135 |
+
// Constructor
|
136 |
+
__device__ SSMScanPrefixCallbackOp(scan_t running_prefix_) : running_prefix(running_prefix_) {}
|
137 |
+
// Callback operator to be entered by the first warp of threads in the block.
|
138 |
+
// Thread-0 is responsible for returning a value for seeding the block-wide scan.
|
139 |
+
__device__ scan_t operator()(scan_t block_aggregate) {
|
140 |
+
scan_t old_prefix = running_prefix;
|
141 |
+
running_prefix = SSMScanOp<scalar_t>()(running_prefix, block_aggregate);
|
142 |
+
return old_prefix;
|
143 |
+
}
|
144 |
+
};
|
145 |
+
|
146 |
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
147 |
+
|
148 |
+
template<typename Ktraits>
|
149 |
+
inline __device__ void load_input(typename Ktraits::input_t *u,
|
150 |
+
typename Ktraits::input_t (&u_vals)[Ktraits::kNItems],
|
151 |
+
typename Ktraits::BlockLoadT::TempStorage &smem_load,
|
152 |
+
int seqlen) {
|
153 |
+
if constexpr (Ktraits::kIsEvenLen) {
|
154 |
+
auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_load);
|
155 |
+
using vec_t = typename Ktraits::vec_t;
|
156 |
+
Ktraits::BlockLoadVecT(smem_load_vec).Load(
|
157 |
+
reinterpret_cast<vec_t*>(u),
|
158 |
+
reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(u_vals)
|
159 |
+
);
|
160 |
+
} else {
|
161 |
+
Ktraits::BlockLoadT(smem_load).Load(u, u_vals, seqlen, 0.f);
|
162 |
+
}
|
163 |
+
}
|
164 |
+
|
165 |
+
template<typename Ktraits>
|
166 |
+
inline __device__ void load_weight(typename Ktraits::input_t *Bvar,
|
167 |
+
typename Ktraits::weight_t (&B_vals)[Ktraits::kNItems],
|
168 |
+
typename Ktraits::BlockLoadWeightT::TempStorage &smem_load_weight,
|
169 |
+
int seqlen) {
|
170 |
+
constexpr int kNItems = Ktraits::kNItems;
|
171 |
+
if constexpr (!Ktraits::kIsComplex) {
|
172 |
+
typename Ktraits::input_t B_vals_load[kNItems];
|
173 |
+
if constexpr (Ktraits::kIsEvenLen) {
|
174 |
+
auto& smem_load_weight_vec = reinterpret_cast<typename Ktraits::BlockLoadWeightVecT::TempStorage&>(smem_load_weight);
|
175 |
+
using vec_t = typename Ktraits::vec_t;
|
176 |
+
Ktraits::BlockLoadWeightVecT(smem_load_weight_vec).Load(
|
177 |
+
reinterpret_cast<vec_t*>(Bvar),
|
178 |
+
reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(B_vals_load)
|
179 |
+
);
|
180 |
+
} else {
|
181 |
+
Ktraits::BlockLoadWeightT(smem_load_weight).Load(Bvar, B_vals_load, seqlen, 0.f);
|
182 |
+
}
|
183 |
+
// #pragma unroll
|
184 |
+
// for (int i = 0; i < kNItems; ++i) { B_vals[i] = B_vals_load[i]; }
|
185 |
+
Converter<typename Ktraits::input_t, kNItems>::to_float(B_vals_load, B_vals);
|
186 |
+
} else {
|
187 |
+
typename Ktraits::input_t B_vals_load[kNItems * 2];
|
188 |
+
if constexpr (Ktraits::kIsEvenLen) {
|
189 |
+
auto& smem_load_weight_vec = reinterpret_cast<typename Ktraits::BlockLoadWeightVecT::TempStorage&>(smem_load_weight);
|
190 |
+
using vec_t = typename Ktraits::vec_t;
|
191 |
+
Ktraits::BlockLoadWeightVecT(smem_load_weight_vec).Load(
|
192 |
+
reinterpret_cast<vec_t*>(Bvar),
|
193 |
+
reinterpret_cast<vec_t(&)[Ktraits::kNLoads * 2]>(B_vals_load)
|
194 |
+
);
|
195 |
+
} else {
|
196 |
+
Ktraits::BlockLoadWeightT(smem_load_weight).Load(Bvar, B_vals_load, seqlen, 0.f);
|
197 |
+
}
|
198 |
+
#pragma unroll
|
199 |
+
for (int i = 0; i < kNItems; ++i) { B_vals[i] = complex_t(B_vals_load[i * 2], B_vals_load[i * 2 + 1]); }
|
200 |
+
}
|
201 |
+
}
|
202 |
+
|
203 |
+
template<typename Ktraits>
|
204 |
+
inline __device__ void store_output(typename Ktraits::input_t *out,
|
205 |
+
const float (&out_vals)[Ktraits::kNItems],
|
206 |
+
typename Ktraits::BlockStoreT::TempStorage &smem_store,
|
207 |
+
int seqlen) {
|
208 |
+
typename Ktraits::input_t write_vals[Ktraits::kNItems];
|
209 |
+
#pragma unroll
|
210 |
+
for (int i = 0; i < Ktraits::kNItems; ++i) { write_vals[i] = out_vals[i]; }
|
211 |
+
if constexpr (Ktraits::kIsEvenLen) {
|
212 |
+
auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_store);
|
213 |
+
using vec_t = typename Ktraits::vec_t;
|
214 |
+
Ktraits::BlockStoreVecT(smem_store_vec).Store(
|
215 |
+
reinterpret_cast<vec_t*>(out),
|
216 |
+
reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(write_vals)
|
217 |
+
);
|
218 |
+
} else {
|
219 |
+
Ktraits::BlockStoreT(smem_store).Store(out, write_vals, seqlen);
|
220 |
+
}
|
221 |
+
}
|
mamba/csrc/selective_scan/selective_scan_fwd_bf16.cu
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
// Split into multiple files to compile in paralell
|
6 |
+
|
7 |
+
#include "selective_scan_fwd_kernel.cuh"
|
8 |
+
|
9 |
+
template void selective_scan_fwd_cuda<at::BFloat16, float>(SSMParamsBase ¶ms, cudaStream_t stream);
|
10 |
+
template void selective_scan_fwd_cuda<at::BFloat16, complex_t>(SSMParamsBase ¶ms, cudaStream_t stream);
|
mamba/csrc/selective_scan/selective_scan_fwd_fp16.cu
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
// Split into multiple files to compile in paralell
|
6 |
+
|
7 |
+
#include "selective_scan_fwd_kernel.cuh"
|
8 |
+
|
9 |
+
template void selective_scan_fwd_cuda<at::Half, float>(SSMParamsBase ¶ms, cudaStream_t stream);
|
10 |
+
template void selective_scan_fwd_cuda<at::Half, complex_t>(SSMParamsBase ¶ms, cudaStream_t stream);
|
mamba/csrc/selective_scan/selective_scan_fwd_fp32.cu
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
// Split into multiple files to compile in paralell
|
6 |
+
|
7 |
+
#include "selective_scan_fwd_kernel.cuh"
|
8 |
+
|
9 |
+
template void selective_scan_fwd_cuda<float, float>(SSMParamsBase ¶ms, cudaStream_t stream);
|
10 |
+
template void selective_scan_fwd_cuda<float, complex_t>(SSMParamsBase ¶ms, cudaStream_t stream);
|
mamba/csrc/selective_scan/selective_scan_fwd_kernel.cuh
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2023, Tri Dao.
|
3 |
+
******************************************************************************/
|
4 |
+
|
5 |
+
#pragma once
|
6 |
+
|
7 |
+
#include <c10/util/BFloat16.h>
|
8 |
+
#include <c10/util/Half.h>
|
9 |
+
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
|
10 |
+
|
11 |
+
#include <cub/block/block_load.cuh>
|
12 |
+
#include <cub/block/block_store.cuh>
|
13 |
+
#include <cub/block/block_scan.cuh>
|
14 |
+
|
15 |
+
#include "selective_scan.h"
|
16 |
+
#include "selective_scan_common.h"
|
17 |
+
#include "static_switch.h"
|
18 |
+
|
19 |
+
template<int kNThreads_, int kNItems_, int kNRows_, bool kIsEvenLen_,
|
20 |
+
bool kIsVariableB_, bool kIsVariableC_,
|
21 |
+
bool kHasZ_, typename input_t_, typename weight_t_>
|
22 |
+
struct Selective_Scan_fwd_kernel_traits {
|
23 |
+
static_assert(kNItems_ % 4 == 0);
|
24 |
+
using input_t = input_t_;
|
25 |
+
using weight_t = weight_t_;
|
26 |
+
static constexpr int kNThreads = kNThreads_;
|
27 |
+
// Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads improves occupancy.
|
28 |
+
static constexpr int kMinBlocks = kNThreads < 128 ? 5 : 3;
|
29 |
+
static constexpr int kNItems = kNItems_;
|
30 |
+
static constexpr int kNRows = kNRows_;
|
31 |
+
static constexpr int kNBytes = sizeof(input_t);
|
32 |
+
static_assert(kNBytes == 2 || kNBytes == 4);
|
33 |
+
static constexpr int kNElts = kNBytes == 4 ? 4 : std::min(8, kNItems);
|
34 |
+
static_assert(kNItems % kNElts == 0);
|
35 |
+
static constexpr int kNLoads = kNItems / kNElts;
|
36 |
+
static constexpr bool kIsComplex = std::is_same_v<weight_t, complex_t>;
|
37 |
+
static constexpr bool kIsEvenLen = kIsEvenLen_;
|
38 |
+
static constexpr bool kIsVariableB = kIsVariableB_;
|
39 |
+
static constexpr bool kIsVariableC = kIsVariableC_;
|
40 |
+
static constexpr bool kHasZ = kHasZ_;
|
41 |
+
|
42 |
+
static constexpr bool kDirectIO = kIsEvenLen && kNLoads == 1;
|
43 |
+
|
44 |
+
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
|
45 |
+
using scan_t = std::conditional_t<!kIsComplex, float2, float4>;
|
46 |
+
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
47 |
+
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads,
|
48 |
+
!kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
|
49 |
+
using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, !kIsComplex ? kNItems : kNItems * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
50 |
+
using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, !kIsComplex ? kNLoads : kNLoads * 2,
|
51 |
+
!kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
|
52 |
+
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
|
53 |
+
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads,
|
54 |
+
!kDirectIO ? cub::BLOCK_STORE_WARP_TRANSPOSE : cub::BLOCK_STORE_DIRECT>;
|
55 |
+
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>;
|
56 |
+
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>;
|
57 |
+
using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
|
58 |
+
static constexpr int kSmemIOSize = std::max({sizeof(typename BlockLoadT::TempStorage),
|
59 |
+
sizeof(typename BlockLoadVecT::TempStorage),
|
60 |
+
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage),
|
61 |
+
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage),
|
62 |
+
sizeof(typename BlockStoreT::TempStorage),
|
63 |
+
sizeof(typename BlockStoreVecT::TempStorage)});
|
64 |
+
static constexpr int kSmemSize = kSmemIOSize + sizeof(typename BlockScanT::TempStorage);
|
65 |
+
};
|
66 |
+
|
67 |
+
template<typename Ktraits>
|
68 |
+
__global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks)
|
69 |
+
void selective_scan_fwd_kernel(SSMParamsBase params) {
|
70 |
+
constexpr bool kIsComplex = Ktraits::kIsComplex;
|
71 |
+
constexpr bool kIsVariableB = Ktraits::kIsVariableB;
|
72 |
+
constexpr bool kIsVariableC = Ktraits::kIsVariableC;
|
73 |
+
constexpr bool kHasZ = Ktraits::kHasZ;
|
74 |
+
constexpr int kNThreads = Ktraits::kNThreads;
|
75 |
+
constexpr int kNItems = Ktraits::kNItems;
|
76 |
+
constexpr int kNRows = Ktraits::kNRows;
|
77 |
+
constexpr bool kDirectIO = Ktraits::kDirectIO;
|
78 |
+
using input_t = typename Ktraits::input_t;
|
79 |
+
using weight_t = typename Ktraits::weight_t;
|
80 |
+
using scan_t = typename Ktraits::scan_t;
|
81 |
+
|
82 |
+
// Shared memory.
|
83 |
+
extern __shared__ char smem_[];
|
84 |
+
// cast to lvalue reference of expected type
|
85 |
+
// char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
|
86 |
+
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t));
|
87 |
+
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
|
88 |
+
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
|
89 |
+
auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
|
90 |
+
auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
|
91 |
+
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
|
92 |
+
auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
|
93 |
+
// weight_t *smem_a = reinterpret_cast<weight_t *>(smem_ + smem_loadstorescan_size);
|
94 |
+
// weight_t *smem_bc = reinterpret_cast<weight_t *>(smem_a + MAX_DSTATE);
|
95 |
+
scan_t *smem_running_prefix = reinterpret_cast<scan_t *>(smem_ + Ktraits::kSmemSize);
|
96 |
+
|
97 |
+
const int batch_id = blockIdx.x;
|
98 |
+
const int dim_id = blockIdx.y;
|
99 |
+
const int group_id = dim_id / (params.dim_ngroups_ratio);
|
100 |
+
input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride
|
101 |
+
+ dim_id * kNRows * params.u_d_stride;
|
102 |
+
input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride
|
103 |
+
+ dim_id * kNRows * params.delta_d_stride;
|
104 |
+
weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * kNRows * params.A_d_stride;
|
105 |
+
weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * kNRows * params.B_d_stride;
|
106 |
+
input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride;
|
107 |
+
weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * kNRows * params.C_d_stride;
|
108 |
+
input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride;
|
109 |
+
scan_t *x = reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id * kNRows) * params.n_chunks * params.dstate;
|
110 |
+
|
111 |
+
float D_val[kNRows] = {0};
|
112 |
+
if (params.D_ptr != nullptr) {
|
113 |
+
#pragma unroll
|
114 |
+
for (int r = 0; r < kNRows; ++r) {
|
115 |
+
D_val[r] = reinterpret_cast<float *>(params.D_ptr)[dim_id * kNRows + r];
|
116 |
+
}
|
117 |
+
}
|
118 |
+
float delta_bias[kNRows] = {0};
|
119 |
+
if (params.delta_bias_ptr != nullptr) {
|
120 |
+
#pragma unroll
|
121 |
+
for (int r = 0; r < kNRows; ++r) {
|
122 |
+
delta_bias[r] = reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id * kNRows + r];
|
123 |
+
}
|
124 |
+
}
|
125 |
+
|
126 |
+
// for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) {
|
127 |
+
// smem_a[state_idx] = A[state_idx * params.A_dstate_stride];
|
128 |
+
// smem_bc[state_idx] = B[state_idx * params.B_dstate_stride] * C[state_idx * params.C_dstate_stride];
|
129 |
+
// }
|
130 |
+
|
131 |
+
constexpr int kChunkSize = kNThreads * kNItems;
|
132 |
+
for (int chunk = 0; chunk < params.n_chunks; ++chunk) {
|
133 |
+
input_t u_vals[kNRows][kNItems], delta_vals_load[kNRows][kNItems];
|
134 |
+
__syncthreads();
|
135 |
+
#pragma unroll
|
136 |
+
for (int r = 0; r < kNRows; ++r) {
|
137 |
+
if constexpr (!kDirectIO) {
|
138 |
+
if (r > 0) { __syncthreads(); }
|
139 |
+
}
|
140 |
+
load_input<Ktraits>(u + r * params.u_d_stride, u_vals[r], smem_load, params.seqlen - chunk * kChunkSize);
|
141 |
+
if constexpr (!kDirectIO) { __syncthreads(); }
|
142 |
+
load_input<Ktraits>(delta + r * params.delta_d_stride, delta_vals_load[r], smem_load, params.seqlen - chunk * kChunkSize);
|
143 |
+
}
|
144 |
+
u += kChunkSize;
|
145 |
+
delta += kChunkSize;
|
146 |
+
|
147 |
+
float delta_vals[kNRows][kNItems], delta_u_vals[kNRows][kNItems], out_vals[kNRows][kNItems];
|
148 |
+
#pragma unroll
|
149 |
+
for (int r = 0; r < kNRows; ++r) {
|
150 |
+
#pragma unroll
|
151 |
+
for (int i = 0; i < kNItems; ++i) {
|
152 |
+
float u_val = float(u_vals[r][i]);
|
153 |
+
delta_vals[r][i] = float(delta_vals_load[r][i]) + delta_bias[r];
|
154 |
+
if (params.delta_softplus) {
|
155 |
+
delta_vals[r][i] = delta_vals[r][i] <= 20.f ? log1pf(expf(delta_vals[r][i])) : delta_vals[r][i];
|
156 |
+
}
|
157 |
+
delta_u_vals[r][i] = delta_vals[r][i] * u_val;
|
158 |
+
out_vals[r][i] = D_val[r] * u_val;
|
159 |
+
}
|
160 |
+
}
|
161 |
+
|
162 |
+
__syncthreads();
|
163 |
+
for (int state_idx = 0; state_idx < params.dstate; ++state_idx) {
|
164 |
+
weight_t A_val[kNRows];
|
165 |
+
#pragma unroll
|
166 |
+
for (int r = 0; r < kNRows; ++r) {
|
167 |
+
A_val[r] = A[state_idx * params.A_dstate_stride + r * params.A_d_stride];
|
168 |
+
// Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
|
169 |
+
constexpr float kLog2e = M_LOG2E;
|
170 |
+
if constexpr (!kIsComplex) {
|
171 |
+
A_val[r] *= kLog2e;
|
172 |
+
} else {
|
173 |
+
A_val[r].real_ *= kLog2e;
|
174 |
+
}
|
175 |
+
}
|
176 |
+
// This variable holds B * C if both B and C are constant across seqlen. If only B varies
|
177 |
+
// across seqlen, this holds C. If only C varies across seqlen, this holds B.
|
178 |
+
// If both B and C vary, this is unused.
|
179 |
+
weight_t BC_val[kNRows];
|
180 |
+
weight_t B_vals[kNItems], C_vals[kNItems];
|
181 |
+
if constexpr (kIsVariableB) {
|
182 |
+
load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals,
|
183 |
+
smem_load_weight, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
|
184 |
+
if constexpr (!kIsVariableC) {
|
185 |
+
#pragma unroll
|
186 |
+
for (int r = 0; r < kNRows; ++r) {
|
187 |
+
BC_val[r] = C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
|
188 |
+
}
|
189 |
+
}
|
190 |
+
}
|
191 |
+
if constexpr (kIsVariableC) {
|
192 |
+
auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1;
|
193 |
+
load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals,
|
194 |
+
smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
|
195 |
+
if constexpr (!kIsVariableB) {
|
196 |
+
#pragma unroll
|
197 |
+
for (int r = 0; r < kNRows; ++r) {
|
198 |
+
BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride];
|
199 |
+
}
|
200 |
+
}
|
201 |
+
}
|
202 |
+
if constexpr (!kIsVariableB && !kIsVariableC) {
|
203 |
+
#pragma unroll
|
204 |
+
for (int r = 0; r < kNRows; ++r) {
|
205 |
+
BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride] * C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
|
206 |
+
}
|
207 |
+
}
|
208 |
+
|
209 |
+
#pragma unroll
|
210 |
+
for (int r = 0; r < kNRows; ++r) {
|
211 |
+
if (r > 0) { __syncthreads(); } // Scan could be using the same smem
|
212 |
+
scan_t thread_data[kNItems];
|
213 |
+
#pragma unroll
|
214 |
+
for (int i = 0; i < kNItems; ++i) {
|
215 |
+
if constexpr (!kIsComplex) {
|
216 |
+
thread_data[i] = make_float2(exp2f(delta_vals[r][i] * A_val[r]),
|
217 |
+
!kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i]);
|
218 |
+
if constexpr (!Ktraits::kIsEvenLen) { // So that the last state is correct
|
219 |
+
if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) {
|
220 |
+
thread_data[i] = make_float2(1.f, 0.f);
|
221 |
+
}
|
222 |
+
}
|
223 |
+
} else {
|
224 |
+
// Pytorch's implementation of complex exp (which calls thrust) is very slow
|
225 |
+
complex_t delta_a_exp = cexp2f(delta_vals[r][i] * A_val[r]);
|
226 |
+
weight_t B_delta_u_val = !kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i];
|
227 |
+
thread_data[i] = make_float4(delta_a_exp.real_, delta_a_exp.imag_, B_delta_u_val.real_, B_delta_u_val.imag_);
|
228 |
+
if constexpr (!Ktraits::kIsEvenLen) { // So that the last state is correct
|
229 |
+
if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) {
|
230 |
+
thread_data[i] = make_float4(1.f, 0.f, 0.f, 0.f);
|
231 |
+
}
|
232 |
+
}
|
233 |
+
}
|
234 |
+
}
|
235 |
+
// Initialize running total
|
236 |
+
scan_t running_prefix;
|
237 |
+
if constexpr (!kIsComplex) {
|
238 |
+
// If we use WARP_SCAN then all lane 0 of all warps (not just thread 0) needs to read
|
239 |
+
running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float2(1.f, 0.f);
|
240 |
+
// running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] : make_float2(1.f, 0.f);
|
241 |
+
} else {
|
242 |
+
running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float4(1.f, 0.f, 0.f, 0.f);
|
243 |
+
// running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
|
244 |
+
}
|
245 |
+
SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
|
246 |
+
Ktraits::BlockScanT(smem_scan).InclusiveScan(
|
247 |
+
thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
|
248 |
+
);
|
249 |
+
// There's a syncthreads in the scan op, so we don't need to sync here.
|
250 |
+
// Unless there's only 1 warp, but then it's the same thread (0) reading and writing.
|
251 |
+
if (threadIdx.x == 0) {
|
252 |
+
smem_running_prefix[state_idx] = prefix_op.running_prefix;
|
253 |
+
x[(r * params.n_chunks + chunk) * params.dstate + state_idx] = prefix_op.running_prefix;
|
254 |
+
}
|
255 |
+
#pragma unroll
|
256 |
+
for (int i = 0; i < kNItems; ++i) {
|
257 |
+
const weight_t C_val = !kIsVariableC
|
258 |
+
? BC_val[r]
|
259 |
+
: (!kIsVariableB ? BC_val[r] * C_vals[i] : C_vals[i]);
|
260 |
+
if constexpr (!kIsComplex) {
|
261 |
+
out_vals[r][i] += thread_data[i].y * C_val;
|
262 |
+
} else {
|
263 |
+
out_vals[r][i] += (complex_t(thread_data[i].z, thread_data[i].w) * C_val).real_ * 2;
|
264 |
+
}
|
265 |
+
}
|
266 |
+
}
|
267 |
+
}
|
268 |
+
|
269 |
+
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
|
270 |
+
+ dim_id * kNRows * params.out_d_stride + chunk * kChunkSize;
|
271 |
+
__syncthreads();
|
272 |
+
#pragma unroll
|
273 |
+
for (int r = 0; r < kNRows; ++r) {
|
274 |
+
if constexpr (!kDirectIO) {
|
275 |
+
if (r > 0) { __syncthreads(); }
|
276 |
+
}
|
277 |
+
store_output<Ktraits>(out + r * params.out_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
|
278 |
+
}
|
279 |
+
|
280 |
+
if constexpr (kHasZ) {
|
281 |
+
input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride
|
282 |
+
+ dim_id * kNRows * params.z_d_stride + chunk * kChunkSize;
|
283 |
+
input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride
|
284 |
+
+ dim_id * kNRows * params.out_z_d_stride + chunk * kChunkSize;
|
285 |
+
#pragma unroll
|
286 |
+
for (int r = 0; r < kNRows; ++r) {
|
287 |
+
input_t z_vals[kNItems];
|
288 |
+
__syncthreads();
|
289 |
+
load_input<Ktraits>(z + r * params.z_d_stride, z_vals, smem_load, params.seqlen - chunk * kChunkSize);
|
290 |
+
#pragma unroll
|
291 |
+
for (int i = 0; i < kNItems; ++i) {
|
292 |
+
float z_val = z_vals[i];
|
293 |
+
out_vals[r][i] *= z_val / (1 + expf(-z_val));
|
294 |
+
}
|
295 |
+
__syncthreads();
|
296 |
+
store_output<Ktraits>(out_z + r * params.out_z_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
|
297 |
+
}
|
298 |
+
}
|
299 |
+
|
300 |
+
Bvar += kChunkSize * (!kIsComplex ? 1 : 2);
|
301 |
+
Cvar += kChunkSize * (!kIsComplex ? 1 : 2);
|
302 |
+
}
|
303 |
+
}
|
304 |
+
|
305 |
+
template<int kNThreads, int kNItems, typename input_t, typename weight_t>
|
306 |
+
void selective_scan_fwd_launch(SSMParamsBase ¶ms, cudaStream_t stream) {
|
307 |
+
// Only kNRows == 1 is tested for now, which ofc doesn't differ from previously when we had each block
|
308 |
+
// processing 1 row.
|
309 |
+
constexpr int kNRows = 1;
|
310 |
+
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
|
311 |
+
BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] {
|
312 |
+
BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] {
|
313 |
+
BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
|
314 |
+
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, input_t, weight_t>;
|
315 |
+
// constexpr int kSmemSize = Ktraits::kSmemSize;
|
316 |
+
constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
|
317 |
+
// printf("smem_size = %d\n", kSmemSize);
|
318 |
+
dim3 grid(params.batch, params.dim / kNRows);
|
319 |
+
auto kernel = &selective_scan_fwd_kernel<Ktraits>;
|
320 |
+
if (kSmemSize >= 48 * 1024) {
|
321 |
+
C10_CUDA_CHECK(cudaFuncSetAttribute(
|
322 |
+
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
|
323 |
+
}
|
324 |
+
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
|
325 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
326 |
+
});
|
327 |
+
});
|
328 |
+
});
|
329 |
+
});
|
330 |
+
}
|
331 |
+
|
332 |
+
template<typename input_t, typename weight_t>
|
333 |
+
void selective_scan_fwd_cuda(SSMParamsBase ¶ms, cudaStream_t stream) {
|
334 |
+
if (params.seqlen <= 128) {
|
335 |
+
selective_scan_fwd_launch<32, 4, input_t, weight_t>(params, stream);
|
336 |
+
} else if (params.seqlen <= 256) {
|
337 |
+
selective_scan_fwd_launch<32, 8, input_t, weight_t>(params, stream);
|
338 |
+
} else if (params.seqlen <= 512) {
|
339 |
+
selective_scan_fwd_launch<32, 16, input_t, weight_t>(params, stream);
|
340 |
+
} else if (params.seqlen <= 1024) {
|
341 |
+
selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
|
342 |
+
} else {
|
343 |
+
selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
|
344 |
+
}
|
345 |
+
}
|
mamba/csrc/selective_scan/static_switch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Inspired by https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
|
2 |
+
// and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
|
3 |
+
|
4 |
+
#pragma once
|
5 |
+
|
6 |
+
/// @param COND - a boolean expression to switch by
|
7 |
+
/// @param CONST_NAME - a name given for the constexpr bool variable.
|
8 |
+
/// @param ... - code to execute for true and false
|
9 |
+
///
|
10 |
+
/// Usage:
|
11 |
+
/// ```
|
12 |
+
/// BOOL_SWITCH(flag, BoolConst, [&] {
|
13 |
+
/// some_function<BoolConst>(...);
|
14 |
+
/// });
|
15 |
+
/// ```
|
16 |
+
#define BOOL_SWITCH(COND, CONST_NAME, ...) \
|
17 |
+
[&] { \
|
18 |
+
if (COND) { \
|
19 |
+
constexpr bool CONST_NAME = true; \
|
20 |
+
return __VA_ARGS__(); \
|
21 |
+
} else { \
|
22 |
+
constexpr bool CONST_NAME = false; \
|
23 |
+
return __VA_ARGS__(); \
|
24 |
+
} \
|
25 |
+
}()
|
mamba/csrc/selective_scan/uninitialized_copy.cuh
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/******************************************************************************
|
2 |
+
* Copyright (c) 2011-2022, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Redistribution and use in source and binary forms, with or without
|
5 |
+
* modification, are permitted provided that the following conditions are met:
|
6 |
+
* * Redistributions of source code must retain the above copyright
|
7 |
+
* notice, this list of conditions and the following disclaimer.
|
8 |
+
* * Redistributions in binary form must reproduce the above copyright
|
9 |
+
* notice, this list of conditions and the following disclaimer in the
|
10 |
+
* documentation and/or other materials provided with the distribution.
|
11 |
+
* * Neither the name of the NVIDIA CORPORATION nor the
|
12 |
+
* names of its contributors may be used to endorse or promote products
|
13 |
+
* derived from this software without specific prior written permission.
|
14 |
+
*
|
15 |
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
16 |
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
17 |
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
18 |
+
* ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
|
19 |
+
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
20 |
+
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
21 |
+
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
22 |
+
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
23 |
+
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
24 |
+
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
25 |
+
*
|
26 |
+
******************************************************************************/
|
27 |
+
|
28 |
+
#pragma once
|
29 |
+
|
30 |
+
#include <cub/config.cuh>
|
31 |
+
|
32 |
+
#include <cuda/std/type_traits>
|
33 |
+
|
34 |
+
|
35 |
+
namespace detail
|
36 |
+
{
|
37 |
+
|
38 |
+
#if defined(_NVHPC_CUDA)
|
39 |
+
template <typename T, typename U>
|
40 |
+
__host__ __device__ void uninitialized_copy(T *ptr, U &&val)
|
41 |
+
{
|
42 |
+
// NVBug 3384810
|
43 |
+
new (ptr) T(::cuda::std::forward<U>(val));
|
44 |
+
}
|
45 |
+
#else
|
46 |
+
template <typename T,
|
47 |
+
typename U,
|
48 |
+
typename ::cuda::std::enable_if<
|
49 |
+
::cuda::std::is_trivially_copyable<T>::value,
|
50 |
+
int
|
51 |
+
>::type = 0>
|
52 |
+
__host__ __device__ void uninitialized_copy(T *ptr, U &&val)
|
53 |
+
{
|
54 |
+
*ptr = ::cuda::std::forward<U>(val);
|
55 |
+
}
|
56 |
+
|
57 |
+
template <typename T,
|
58 |
+
typename U,
|
59 |
+
typename ::cuda::std::enable_if<
|
60 |
+
!::cuda::std::is_trivially_copyable<T>::value,
|
61 |
+
int
|
62 |
+
>::type = 0>
|
63 |
+
__host__ __device__ void uninitialized_copy(T *ptr, U &&val)
|
64 |
+
{
|
65 |
+
new (ptr) T(::cuda::std::forward<U>(val));
|
66 |
+
}
|
67 |
+
#endif
|
68 |
+
|
69 |
+
} // namespace detail
|