Command-R / app.py
minhdang's picture
Update app.py
ec6946b verified
raw
history blame
3.34 kB
import torch
torch.jit.script = lambda f: f
import spaces
import gradio as gr
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig,AwqConfig
import torch
import os
import bitnet
key = os.environ.get("key")
from huggingface_hub import login
login(key)
from bitnet import replace_linears_in_hf
# os.system("pip install flash-attn --no-build-isolation")
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
model_id = "CohereForAI/c4ai-command-r-v01"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,
# load_in_8bit=True,
quantization_config=nf4_config,
# attn_implementation="flash_attention_2",
# torch_dtype = torch.bfloat16,
device_map="auto"
)
# replace_linears_in_hf(model)
model.eval()
@spaces.GPU
def generate_response(user_input, max_new_tokens, temperature):
os.system("nvidia-smi")
messages = [{"role": "user", "content": user_input}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
input_ids = input_ids.to(model.device)
os.system("nvidia-smi")
gen_tokens = model.generate(
input_ids = input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
)
gen_text = tokenizer.decode(gen_tokens[0], skip_special_tokens=True)
if gen_text.startswith(user_input):
gen_text = gen_text[len(user_input):].lstrip()
return gen_text
examples = [
{"message": "What is the weather like today?", "max_new_tokens": 250, "temperature": 0.5},
{"message": "Tell me a joke.", "max_new_tokens": 650, "temperature": 0.7},
{"message": "Explain the concept of machine learning.", "max_new_tokens": 980, "temperature": 0.4}
]
example_choices = [f"Example {i+1}" for i in range(len(examples))]
def load_example(choice):
index = example_choices.index(choice)
example = examples[index]
return example["message"], example["max_new_tokens"], example["temperature"]
with gr.Blocks() as demo:
with gr.Row():
max_new_tokens_slider = gr.Slider(minimum=100, maximum=4000, value=980, label="Max New Tokens")
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.3, label="Temperature")
message_box = gr.Textbox(lines=2, label="Your Message")
generate_button = gr.Button("Try🫡Command-R")
output_box = gr.Textbox(label="🫡Command-R")
generate_button.click(
fn=generate_response,
inputs=[message_box, max_new_tokens_slider, temperature_slider],
outputs=output_box
)
example_dropdown = gr.Dropdown(label="🫡Load Example", choices=example_choices)
example_button = gr.Button("🫡Load")
example_button.click(
fn=load_example,
inputs=example_dropdown,
outputs=[message_box, max_new_tokens_slider, temperature_slider]
)
demo.launch()