minhaj-ripon commited on
Commit
4665298
·
1 Parent(s): 81cbd29

radar_chart.py updated

Browse files
Files changed (1) hide show
  1. radar_chart.py +1 -100
radar_chart.py CHANGED
@@ -1,19 +1,3 @@
1
- """
2
- ======================================
3
- Radar chart (aka spider or star chart)
4
- ======================================
5
-
6
- This example creates a radar chart, also known as a spider or star chart [1]_.
7
-
8
- Although this example allows a frame of either 'circle' or 'polygon', polygon
9
- frames don't have proper gridlines (the lines are circles instead of polygons).
10
- It's possible to get a polygon grid by setting GRIDLINE_INTERPOLATION_STEPS in
11
- matplotlib.axis to the desired number of vertices, but the orientation of the
12
- polygon is not aligned with the radial axes.
13
-
14
- .. [1] https://en.wikipedia.org/wiki/Radar_chart
15
- """
16
-
17
  import numpy as np
18
 
19
  import matplotlib.pyplot as plt
@@ -26,28 +10,11 @@ from matplotlib.transforms import Affine2D
26
 
27
 
28
  def radar_factory(num_vars, frame='circle'):
29
- """
30
- Create a radar chart with `num_vars` axes.
31
-
32
- This function creates a RadarAxes projection and registers it.
33
-
34
- Parameters
35
- ----------
36
- num_vars : int
37
- Number of variables for radar chart.
38
- frame : {'circle', 'polygon'}
39
- Shape of frame surrounding axes.
40
-
41
- """
42
- # calculate evenly-spaced axis angles
43
  theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False)
44
 
45
  class RadarTransform(PolarAxes.PolarTransform):
46
 
47
  def transform_path_non_affine(self, path):
48
- # Paths with non-unit interpolation steps correspond to gridlines,
49
- # in which case we force interpolation (to defeat PolarTransform's
50
- # autoconversion to circular arcs).
51
  if path._interpolation_steps > 1:
52
  path = path.interpolated(num_vars)
53
  return Path(self.transform(path.vertices), path.codes)
@@ -59,22 +26,18 @@ def radar_factory(num_vars, frame='circle'):
59
 
60
  def __init__(self, *args, **kwargs):
61
  super().__init__(*args, **kwargs)
62
- # rotate plot such that the first axis is at the top
63
  self.set_theta_zero_location('N')
64
 
65
  def fill(self, *args, closed=True, **kwargs):
66
- """Override fill so that line is closed by default"""
67
  return super().fill(closed=closed, *args, **kwargs)
68
 
69
  def plot(self, *args, **kwargs):
70
- """Override plot so that line is closed by default"""
71
  lines = super().plot(*args, **kwargs)
72
  for line in lines:
73
  self._close_line(line)
74
 
75
  def _close_line(self, line):
76
  x, y = line.get_data()
77
- # FIXME: markers at x[0], y[0] get doubled-up
78
  if x[0] != x[-1]:
79
  x = np.append(x, x[0])
80
  y = np.append(y, y[0])
@@ -84,8 +47,6 @@ def radar_factory(num_vars, frame='circle'):
84
  self.set_thetagrids(np.degrees(theta), labels)
85
 
86
  def _gen_axes_patch(self):
87
- # The Axes patch must be centered at (0.5, 0.5) and of radius 0.5
88
- # in axes coordinates.
89
  if frame == 'circle':
90
  return Circle((0.5, 0.5), 0.5)
91
  elif frame == 'polygon':
@@ -98,13 +59,9 @@ def radar_factory(num_vars, frame='circle'):
98
  if frame == 'circle':
99
  return super()._gen_axes_spines()
100
  elif frame == 'polygon':
101
- # spine_type must be 'left'/'right'/'top'/'bottom'/'circle'.
102
  spine = Spine(axes=self,
103
  spine_type='circle',
104
  path=Path.unit_regular_polygon(num_vars))
105
- # unit_regular_polygon gives a polygon of radius 1 centered at
106
- # (0, 0) but we want a polygon of radius 0.5 centered at (0.5,
107
- # 0.5) in axes coordinates.
108
  spine.set_transform(Affine2D().scale(.5).translate(.5, .5)
109
  + self.transAxes)
110
  return {'polar': spine}
@@ -116,25 +73,6 @@ def radar_factory(num_vars, frame='circle'):
116
 
117
 
118
  def example_data():
119
- # The following data is from the Denver Aerosol Sources and Health study.
120
- # See doi:10.1016/j.atmosenv.2008.12.017
121
- #
122
- # The data are pollution source profile estimates for five modeled
123
- # pollution sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical
124
- # species. The radar charts are experimented with here to see if we can
125
- # nicely visualize how the modeled source profiles change across four
126
- # scenarios:
127
- # 1) No gas-phase species present, just seven particulate counts on
128
- # Sulfate
129
- # Nitrate
130
- # Elemental Carbon (EC)
131
- # Organic Carbon fraction 1 (OC)
132
- # Organic Carbon fraction 2 (OC2)
133
- # Organic Carbon fraction 3 (OC3)
134
- # Pyrolyzed Organic Carbon (OP)
135
- # 2)Inclusion of gas-phase specie carbon monoxide (CO)
136
- # 3)Inclusion of gas-phase specie ozone (O3).
137
- # 4)Inclusion of both gas-phase species is present...
138
  data = [
139
  ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 'O3'],
140
  ('Basecase', [
@@ -181,45 +119,8 @@ if __name__ == '__main__':
181
  'surprised'])
182
  fig, axs = plt.subplots(figsize=(8, 8), nrows=1, ncols=1,
183
  subplot_kw=dict(projection='radar'))
184
- # fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
185
  vec = np.array([0.1, 0.05, 0.2, 0.05, 0.3, 0, 0.15, 0.15])
186
  axs.plot(vec)
187
  axs.set_varlabels(spoke_labels)
188
- # colors = ['b', 'r', 'g', 'm', 'y']
189
- # # Plot the four cases from the example data on separate axes
190
- # for ax, (title, case_data) in zip(axs.flat, data):
191
- # ax.set_rgrids([0.2, 0.4, 0.6, 0.8])
192
- # ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
193
- # horizontalalignment='center', verticalalignment='center')
194
- # for d, color in zip(case_data, colors):
195
- # ax.plot(theta, d, color=color)
196
- # ax.fill(theta, d, facecolor=color, alpha=0.25, label='_nolegend_')
197
- # ax.set_varlabels(spoke_labels)
198
-
199
- # # add legend relative to top-left plot
200
- # labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5')
201
- # legend = axs[0, 0].legend(labels, loc=(0.9, .95),
202
- # labelspacing=0.1, fontsize='small')
203
-
204
- # fig.text(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
205
- # horizontalalignment='center', color='black', weight='bold',
206
- # size='large')
207
-
208
  plt.show()
209
-
210
-
211
- #############################################################################
212
- #
213
- # .. admonition:: References
214
- #
215
- # The use of the following functions, methods, classes and modules is shown
216
- # in this example:
217
- #
218
- # - `matplotlib.path`
219
- # - `matplotlib.path.Path`
220
- # - `matplotlib.spines`
221
- # - `matplotlib.spines.Spine`
222
- # - `matplotlib.projections`
223
- # - `matplotlib.projections.polar`
224
- # - `matplotlib.projections.polar.PolarAxes`
225
- # - `matplotlib.projections.register_projection`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import numpy as np
2
 
3
  import matplotlib.pyplot as plt
 
10
 
11
 
12
  def radar_factory(num_vars, frame='circle'):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False)
14
 
15
  class RadarTransform(PolarAxes.PolarTransform):
16
 
17
  def transform_path_non_affine(self, path):
 
 
 
18
  if path._interpolation_steps > 1:
19
  path = path.interpolated(num_vars)
20
  return Path(self.transform(path.vertices), path.codes)
 
26
 
27
  def __init__(self, *args, **kwargs):
28
  super().__init__(*args, **kwargs)
 
29
  self.set_theta_zero_location('N')
30
 
31
  def fill(self, *args, closed=True, **kwargs):
 
32
  return super().fill(closed=closed, *args, **kwargs)
33
 
34
  def plot(self, *args, **kwargs):
 
35
  lines = super().plot(*args, **kwargs)
36
  for line in lines:
37
  self._close_line(line)
38
 
39
  def _close_line(self, line):
40
  x, y = line.get_data()
 
41
  if x[0] != x[-1]:
42
  x = np.append(x, x[0])
43
  y = np.append(y, y[0])
 
47
  self.set_thetagrids(np.degrees(theta), labels)
48
 
49
  def _gen_axes_patch(self):
 
 
50
  if frame == 'circle':
51
  return Circle((0.5, 0.5), 0.5)
52
  elif frame == 'polygon':
 
59
  if frame == 'circle':
60
  return super()._gen_axes_spines()
61
  elif frame == 'polygon':
 
62
  spine = Spine(axes=self,
63
  spine_type='circle',
64
  path=Path.unit_regular_polygon(num_vars))
 
 
 
65
  spine.set_transform(Affine2D().scale(.5).translate(.5, .5)
66
  + self.transAxes)
67
  return {'polar': spine}
 
73
 
74
 
75
  def example_data():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  data = [
77
  ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 'O3'],
78
  ('Basecase', [
 
119
  'surprised'])
120
  fig, axs = plt.subplots(figsize=(8, 8), nrows=1, ncols=1,
121
  subplot_kw=dict(projection='radar'))
 
122
  vec = np.array([0.1, 0.05, 0.2, 0.05, 0.3, 0, 0.15, 0.15])
123
  axs.plot(vec)
124
  axs.set_varlabels(spoke_labels)
125
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  plt.show()