Spaces:
Running
Running
""" | |
This code is borrowed from https://github.com/EricGuo5513/text-to-motion | |
""" | |
import torch | |
import numpy as np | |
import math | |
import matplotlib | |
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d import Axes3D | |
from matplotlib.animation import FuncAnimation, FFMpegFileWriter | |
from mpl_toolkits.mplot3d.art3d import Poly3DCollection | |
import mpl_toolkits.mplot3d.axes3d as p3 | |
# Define a kinematic tree for the skeletal struture | |
kit_kinematic_chain = [[0, 11, 12, 13, 14, 15], [0, 16, 17, 18, 19, 20], [0, 1, 2, 3, 4], [3, 5, 6, 7], [3, 8, 9, 10]] | |
kit_raw_offsets = np.array( | |
[ | |
[0, 0, 0], | |
[0, 1, 0], | |
[0, 1, 0], | |
[0, 1, 0], | |
[0, 1, 0], | |
[1, 0, 0], | |
[0, -1, 0], | |
[0, -1, 0], | |
[-1, 0, 0], | |
[0, -1, 0], | |
[0, -1, 0], | |
[1, 0, 0], | |
[0, -1, 0], | |
[0, -1, 0], | |
[0, 0, 1], | |
[0, 0, 1], | |
[-1, 0, 0], | |
[0, -1, 0], | |
[0, -1, 0], | |
[0, 0, 1], | |
[0, 0, 1] | |
] | |
) | |
t2m_raw_offsets = np.array([[0,0,0], | |
[1,0,0], | |
[-1,0,0], | |
[0,1,0], | |
[0,-1,0], | |
[0,-1,0], | |
[0,1,0], | |
[0,-1,0], | |
[0,-1,0], | |
[0,1,0], | |
[0,0,1], | |
[0,0,1], | |
[0,1,0], | |
[1,0,0], | |
[-1,0,0], | |
[0,0,1], | |
[0,-1,0], | |
[0,-1,0], | |
[0,-1,0], | |
[0,-1,0], | |
[0,-1,0], | |
[0,-1,0]]) | |
t2m_kinematic_chain = [[0, 2, 5, 8, 11], [0, 1, 4, 7, 10], [0, 3, 6, 9, 12, 15], [9, 14, 17, 19, 21], [9, 13, 16, 18, 20]] | |
t2m_left_hand_chain = [[20, 22, 23, 24], [20, 34, 35, 36], [20, 25, 26, 27], [20, 31, 32, 33], [20, 28, 29, 30]] | |
t2m_right_hand_chain = [[21, 43, 44, 45], [21, 46, 47, 48], [21, 40, 41, 42], [21, 37, 38, 39], [21, 49, 50, 51]] | |
def qinv(q): | |
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)' | |
mask = torch.ones_like(q) | |
mask[..., 1:] = -mask[..., 1:] | |
return q * mask | |
def qrot(q, v): | |
""" | |
Rotate vector(s) v about the rotation described by quaternion(s) q. | |
Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v, | |
where * denotes any number of dimensions. | |
Returns a tensor of shape (*, 3). | |
""" | |
assert q.shape[-1] == 4 | |
assert v.shape[-1] == 3 | |
assert q.shape[:-1] == v.shape[:-1] | |
original_shape = list(v.shape) | |
# print(q.shape) | |
q = q.contiguous().view(-1, 4) | |
v = v.contiguous().view(-1, 3) | |
qvec = q[:, 1:] | |
uv = torch.cross(qvec, v, dim=1) | |
uuv = torch.cross(qvec, uv, dim=1) | |
return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape) | |
def recover_root_rot_pos(data): | |
rot_vel = data[..., 0] | |
r_rot_ang = torch.zeros_like(rot_vel).to(data.device) | |
'''Get Y-axis rotation from rotation velocity''' | |
r_rot_ang[..., 1:] = rot_vel[..., :-1] | |
r_rot_ang = torch.cumsum(r_rot_ang, dim=-1) | |
r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device) | |
r_rot_quat[..., 0] = torch.cos(r_rot_ang) | |
r_rot_quat[..., 2] = torch.sin(r_rot_ang) | |
r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device) | |
r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3] | |
'''Add Y-axis rotation to root position''' | |
r_pos = qrot(qinv(r_rot_quat), r_pos) | |
r_pos = torch.cumsum(r_pos, dim=-2) | |
r_pos[..., 1] = data[..., 3] | |
return r_rot_quat, r_pos | |
def recover_from_ric(data, joints_num): | |
r_rot_quat, r_pos = recover_root_rot_pos(data) | |
positions = data[..., 4:(joints_num - 1) * 3 + 4] | |
positions = positions.view(positions.shape[:-1] + (-1, 3)) | |
'''Add Y-axis rotation to local joints''' | |
positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions) | |
'''Add root XZ to joints''' | |
positions[..., 0] += r_pos[..., 0:1] | |
positions[..., 2] += r_pos[..., 2:3] | |
'''Concate root and joints''' | |
positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2) | |
return positions | |
def plot_3d_motion(save_path, kinematic_tree, joints, title, figsize=(10, 10), fps=120, radius=4): | |
matplotlib.use('Agg') | |
title_sp = title.split(' ') | |
if len(title_sp) > 20: | |
title = '\n'.join([' '.join(title_sp[:10]), ' '.join(title_sp[10:20]), ' '.join(title_sp[20:])]) | |
elif len(title_sp) > 10: | |
title = '\n'.join([' '.join(title_sp[:10]), ' '.join(title_sp[10:])]) | |
def init(): | |
ax.set_xlim3d([-radius / 4, radius / 4]) | |
ax.set_ylim3d([0, radius / 2]) | |
ax.set_zlim3d([0, radius / 2]) | |
fig.suptitle(title, fontsize=20) | |
ax.grid(b=False) | |
def plot_xzPlane(minx, maxx, miny, minz, maxz): | |
verts = [ | |
[minx, miny, minz], | |
[minx, miny, maxz], | |
[maxx, miny, maxz], | |
[maxx, miny, minz] | |
] | |
xz_plane = Poly3DCollection([verts]) | |
xz_plane.set_facecolor((0.5, 0.5, 0.5, 0.5)) | |
ax.add_collection3d(xz_plane) | |
# (seq_len, joints_num, 3) | |
data = joints.copy().reshape(len(joints), -1, 3) | |
fig = plt.figure(figsize=figsize) | |
ax = p3.Axes3D(fig) | |
init() | |
MINS = data.min(axis=0).min(axis=0) | |
MAXS = data.max(axis=0).max(axis=0) | |
colors = ['red', 'blue', 'black', 'red', 'blue', | |
'darkblue', 'darkblue', 'darkblue', 'darkblue', 'darkblue', | |
'darkred', 'darkred', 'darkred', 'darkred', 'darkred'] | |
frame_number = data.shape[0] | |
height_offset = MINS[1] | |
data[:, :, 1] -= height_offset | |
trajec = data[:, 0, [0, 2]] | |
data[..., 0] -= data[:, 0:1, 0] | |
data[..., 2] -= data[:, 0:1, 2] | |
def update(index): | |
ax.lines = [] | |
ax.collections = [] | |
ax.view_init(elev=120, azim=-90) | |
ax.dist = 7.5 | |
plot_xzPlane(MINS[0] - trajec[index, 0], MAXS[0] - trajec[index, 0], 0, MINS[2] - trajec[index, 1], | |
MAXS[2] - trajec[index, 1]) | |
if index > 1: | |
ax.plot3D(trajec[:index, 0] - trajec[index, 0], np.zeros_like(trajec[:index, 0]), | |
trajec[:index, 1] - trajec[index, 1], linewidth=1.0, | |
color='blue') | |
for i, (chain, color) in enumerate(zip(kinematic_tree, colors)): | |
if i < 5: | |
linewidth = 4.0 | |
else: | |
linewidth = 2.0 | |
ax.plot3D(data[index, chain, 0], data[index, chain, 1], data[index, chain, 2], linewidth=linewidth, | |
color=color) | |
plt.axis('off') | |
ax.set_xticklabels([]) | |
ax.set_yticklabels([]) | |
ax.set_zticklabels([]) | |
ani = FuncAnimation(fig, update, frames=frame_number, interval=1000 / fps, repeat=False) | |
ani.save(save_path, fps=fps) | |
plt.close() | |