Spaces:
Running
Running
import os | |
import sys | |
import gradio as gr | |
os.makedirs("outputs", exist_ok=True) | |
sys.path.insert(0, '.') | |
import argparse | |
import os.path as osp | |
import mmcv | |
import numpy as np | |
import torch | |
from mogen.models import build_architecture | |
from mmcv.runner import load_checkpoint | |
from mmcv.parallel import MMDataParallel | |
from mogen.utils.plot_utils import ( | |
recover_from_ric, | |
plot_3d_motion, | |
t2m_kinematic_chain | |
) | |
from scipy.ndimage import gaussian_filter | |
from IPython.display import Image | |
def motion_temporal_filter(motion, sigma=1): | |
motion = motion.reshape(motion.shape[0], -1) | |
for i in range(motion.shape[1]): | |
motion[:, i] = gaussian_filter(motion[:, i], sigma=sigma, mode="nearest") | |
return motion.reshape(motion.shape[0], -1, 3) | |
def plot_t2m(data, result_path, npy_path, caption): | |
joint = recover_from_ric(torch.from_numpy(data).float(), 22).numpy() | |
joint = motion_temporal_filter(joint, sigma=2.5) | |
plot_3d_motion(result_path, t2m_kinematic_chain, joint, title=caption, fps=20) | |
if npy_path is not None: | |
np.save(npy_path, joint) | |
def create_remodiffuse(): | |
config_path = "configs/remodiffuse/remodiffuse_t2m.py" | |
ckpt_path = "logs/remodiffuse/remodiffuse_t2m/latest.pth" | |
cfg = mmcv.Config.fromfile(config_path) | |
model = build_architecture(cfg.model) | |
load_checkpoint(model, ckpt_path, map_location='cpu') | |
model.cpu() | |
model.eval() | |
return model | |
def create_motiondiffuse(): | |
config_path = "configs/motiondiffuse/motiondiffuse_t2m.py" | |
ckpt_path = "logs/motiondiffuse/motiondiffuse_t2m/latest.pth" | |
cfg = mmcv.Config.fromfile(config_path) | |
model = build_architecture(cfg.model) | |
load_checkpoint(model, ckpt_path, map_location='cpu') | |
model.cpu() | |
model.eval() | |
return model | |
def create_mdm(): | |
config_path = "configs/mdm/mdm_t2m_official.py" | |
ckpt_path = "logs/mdm/mdm_t2m/latest.pth" | |
cfg = mmcv.Config.fromfile(config_path) | |
model = build_architecture(cfg.model) | |
load_checkpoint(model, ckpt_path, map_location='cpu') | |
model.cpu() | |
model.eval() | |
return model | |
model_remodiffuse = create_remodiffuse() | |
# model_motiondiffuse = create_motiondiffuse() | |
# model_mdm = create_mdm() | |
mean_path = "data/datasets/human_ml3d/mean.npy" | |
std_path = "data/datasets/human_ml3d/std.npy" | |
mean = np.load(mean_path) | |
std = np.load(std_path) | |
def show_generation_result(model, text, motion_length, result_path): | |
device = 'cpu' | |
motion = torch.zeros(1, motion_length, 263).to(device) | |
motion_mask = torch.ones(1, motion_length).to(device) | |
motion_length = torch.Tensor([motion_length]).long().to(device) | |
model = model.to(device) | |
input = { | |
'motion': motion, | |
'motion_mask': motion_mask, | |
'motion_length': motion_length, | |
'motion_metas': [{'text': text}], | |
} | |
all_pred_motion = [] | |
with torch.no_grad(): | |
input['inference_kwargs'] = {} | |
output_list = [] | |
output = model(**input)[0]['pred_motion'] | |
pred_motion = output.cpu().detach().numpy() | |
pred_motion = pred_motion * std + mean | |
plot_t2m(pred_motion, result_path, None, text) | |
def generate(prompt, length): | |
if not os.path.exists("outputs"): | |
os.mkdir("outputs") | |
result_path = "outputs/" + str(hash(prompt)) + ".mp4" | |
show_generation_result(model_remodiffuse, prompt, length, result_path) | |
return result_path | |
demo = gr.Interface( | |
fn=generate, | |
inputs=["text", gr.Slider(20, 196, value=60)], | |
examples=[ | |
["a person performs a cartwheel", 57], | |
["a person picks up something from the ground", 79], | |
["a person walks around and then sits down", 190], | |
["a person performs a deep bow", 89], | |
], | |
outputs="video", | |
title="ReMoDiffuse: Retrieval-Augmented Motion Diffusion Model", | |
description="This is an interactive demo for ReMoDiffuse. For more information, feel free to visit our project page(https://mingyuan-zhang.github.io/projects/ReMoDiffuse.html).") | |
demo.queue() | |
demo.launch() |