Spaces:
Running
Running
from collections import OrderedDict | |
import torch.distributed as dist | |
from mmcv.runner import OptimizerHook | |
from torch._utils import ( | |
_flatten_dense_tensors, | |
_take_tensors, | |
_unflatten_dense_tensors, | |
) | |
def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1): | |
if bucket_size_mb > 0: | |
bucket_size_bytes = bucket_size_mb * 1024 * 1024 | |
buckets = _take_tensors(tensors, bucket_size_bytes) | |
else: | |
buckets = OrderedDict() | |
for tensor in tensors: | |
tp = tensor.type() | |
if tp not in buckets: | |
buckets[tp] = [] | |
buckets[tp].append(tensor) | |
buckets = buckets.values() | |
for bucket in buckets: | |
flat_tensors = _flatten_dense_tensors(bucket) | |
dist.all_reduce(flat_tensors) | |
flat_tensors.div_(world_size) | |
for tensor, synced in zip( | |
bucket, _unflatten_dense_tensors(flat_tensors, bucket)): | |
tensor.copy_(synced) | |
def allreduce_grads(params, coalesce=True, bucket_size_mb=-1): | |
grads = [ | |
param.grad.data for param in params | |
if param.requires_grad and param.grad is not None | |
] | |
world_size = dist.get_world_size() | |
if coalesce: | |
_allreduce_coalesced(grads, world_size, bucket_size_mb) | |
else: | |
for tensor in grads: | |
dist.all_reduce(tensor.div_(world_size)) | |
class DistOptimizerHook(OptimizerHook): | |
def __init__(self, grad_clip=None, coalesce=True, bucket_size_mb=-1): | |
self.grad_clip = grad_clip | |
self.coalesce = coalesce | |
self.bucket_size_mb = bucket_size_mb | |
def after_train_iter(self, runner): | |
runner.optimizer.zero_grad() | |
runner.outputs['loss'].backward() | |
if self.grad_clip is not None: | |
self.clip_grads(runner.model.parameters()) | |
runner.optimizer.step() |