Spaces:
Running
Running
import os.path as osp | |
import pickle | |
import shutil | |
import tempfile | |
import time | |
import mmcv | |
import torch | |
import torch.distributed as dist | |
from mmcv.runner import get_dist_info | |
def single_gpu_test(model, data_loader): | |
"""Test with single gpu.""" | |
model.eval() | |
results = [] | |
dataset = data_loader.dataset | |
prog_bar = mmcv.ProgressBar(len(dataset)) | |
for i, data in enumerate(data_loader): | |
with torch.no_grad(): | |
result = model(return_loss=False, **data) | |
batch_size = len(result) | |
if isinstance(result, list): | |
results.extend(result) | |
else: | |
results.append(result) | |
batch_size = data['motion'].size(0) | |
for _ in range(batch_size): | |
prog_bar.update() | |
return results | |
def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False): | |
"""Test model with multiple gpus. | |
This method tests model with multiple gpus and collects the results | |
under two different modes: gpu and cpu modes. By setting 'gpu_collect=True' | |
it encodes results to gpu tensors and use gpu communication for results | |
collection. On cpu mode it saves the results on different gpus to 'tmpdir' | |
and collects them by the rank 0 worker. | |
Args: | |
model (nn.Module): Model to be tested. | |
data_loader (nn.Dataloader): Pytorch data loader. | |
tmpdir (str): Path of directory to save the temporary results from | |
different gpus under cpu mode. | |
gpu_collect (bool): Option to use either gpu or cpu to collect results. | |
Returns: | |
list: The prediction results. | |
""" | |
model.eval() | |
results = [] | |
dataset = data_loader.dataset | |
rank, world_size = get_dist_info() | |
if rank == 0: | |
# Check if tmpdir is valid for cpu_collect | |
if (not gpu_collect) and (tmpdir is not None and osp.exists(tmpdir)): | |
raise OSError((f'The tmpdir {tmpdir} already exists.', | |
' Since tmpdir will be deleted after testing,', | |
' please make sure you specify an empty one.')) | |
prog_bar = mmcv.ProgressBar(len(dataset)) | |
time.sleep(2) # This line can prevent deadlock problem in some cases. | |
for i, data in enumerate(data_loader): | |
with torch.no_grad(): | |
result = model(return_loss=False, **data) | |
if isinstance(result, list): | |
results.extend(result) | |
else: | |
results.append(result) | |
if rank == 0: | |
batch_size = data['motion'].size(0) | |
for _ in range(batch_size * world_size): | |
prog_bar.update() | |
# collect results from all ranks | |
if gpu_collect: | |
results = collect_results_gpu(results, len(dataset)) | |
else: | |
results = collect_results_cpu(results, len(dataset), tmpdir) | |
return results | |
def collect_results_cpu(result_part, size, tmpdir=None): | |
"""Collect results in cpu.""" | |
rank, world_size = get_dist_info() | |
# create a tmp dir if it is not specified | |
if tmpdir is None: | |
MAX_LEN = 512 | |
# 32 is whitespace | |
dir_tensor = torch.full((MAX_LEN, ), | |
32, | |
dtype=torch.uint8, | |
device='cuda') | |
if rank == 0: | |
mmcv.mkdir_or_exist('.dist_test') | |
tmpdir = tempfile.mkdtemp(dir='.dist_test') | |
tmpdir = torch.tensor( | |
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') | |
dir_tensor[:len(tmpdir)] = tmpdir | |
dist.broadcast(dir_tensor, 0) | |
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() | |
else: | |
mmcv.mkdir_or_exist(tmpdir) | |
# dump the part result to the dir | |
mmcv.dump(result_part, osp.join(tmpdir, f'part_{rank}.pkl')) | |
dist.barrier() | |
# collect all parts | |
if rank != 0: | |
return None | |
else: | |
# load results of all parts from tmp dir | |
part_list = [] | |
for i in range(world_size): | |
part_file = osp.join(tmpdir, f'part_{i}.pkl') | |
part_result = mmcv.load(part_file) | |
part_list.append(part_result) | |
# sort the results | |
ordered_results = [] | |
for res in zip(*part_list): | |
ordered_results.extend(list(res)) | |
# the dataloader may pad some samples | |
ordered_results = ordered_results[:size] | |
# remove tmp dir | |
shutil.rmtree(tmpdir) | |
return ordered_results | |
def collect_results_gpu(result_part, size): | |
"""Collect results in gpu.""" | |
rank, world_size = get_dist_info() | |
# dump result part to tensor with pickle | |
part_tensor = torch.tensor( | |
bytearray(pickle.dumps(result_part)), dtype=torch.uint8, device='cuda') | |
# gather all result part tensor shape | |
shape_tensor = torch.tensor(part_tensor.shape, device='cuda') | |
shape_list = [shape_tensor.clone() for _ in range(world_size)] | |
dist.all_gather(shape_list, shape_tensor) | |
# padding result part tensor to max length | |
shape_max = torch.tensor(shape_list).max() | |
part_send = torch.zeros(shape_max, dtype=torch.uint8, device='cuda') | |
part_send[:shape_tensor[0]] = part_tensor | |
part_recv_list = [ | |
part_tensor.new_zeros(shape_max) for _ in range(world_size) | |
] | |
# gather all result part | |
dist.all_gather(part_recv_list, part_send) | |
if rank == 0: | |
part_list = [] | |
for recv, shape in zip(part_recv_list, shape_list): | |
part_result = pickle.loads(recv[:shape[0]].cpu().numpy().tobytes()) | |
part_list.append(part_result) | |
# sort the results | |
ordered_results = [] | |
for res in zip(*part_list): | |
ordered_results.extend(list(res)) | |
# the dataloader may pad some samples | |
ordered_results = ordered_results[:size] | |
return ordered_results |