MotionDiffuse / tools /evaluation.py
root
initial commit
12deb01
from datetime import datetime
import numpy as np
import torch
from datasets import get_dataset_motion_loader, get_motion_loader
from models import MotionTransformer
from utils.get_opt import get_opt
from utils.metrics import *
from datasets import EvaluatorModelWrapper
from collections import OrderedDict
from utils.plot_script import *
from utils import paramUtil
from utils.utils import *
from trainers import DDPMTrainer
from os.path import join as pjoin
import sys
def build_models(opt, dim_pose):
encoder = MotionTransformer(
input_feats=dim_pose,
num_frames=opt.max_motion_length,
num_layers=opt.num_layers,
latent_dim=opt.latent_dim,
no_clip=opt.no_clip,
no_eff=opt.no_eff)
return encoder
torch.multiprocessing.set_sharing_strategy('file_system')
def evaluate_matching_score(motion_loaders, file):
match_score_dict = OrderedDict({})
R_precision_dict = OrderedDict({})
activation_dict = OrderedDict({})
# print(motion_loaders.keys())
print('========== Evaluating Matching Score ==========')
for motion_loader_name, motion_loader in motion_loaders.items():
all_motion_embeddings = []
score_list = []
all_size = 0
matching_score_sum = 0
top_k_count = 0
# print(motion_loader_name)
with torch.no_grad():
for idx, batch in enumerate(motion_loader):
word_embeddings, pos_one_hots, _, sent_lens, motions, m_lens, _ = batch
text_embeddings, motion_embeddings = eval_wrapper.get_co_embeddings(
word_embs=word_embeddings,
pos_ohot=pos_one_hots,
cap_lens=sent_lens,
motions=motions,
m_lens=m_lens
)
dist_mat = euclidean_distance_matrix(text_embeddings.cpu().numpy(),
motion_embeddings.cpu().numpy())
matching_score_sum += dist_mat.trace()
argsmax = np.argsort(dist_mat, axis=1)
top_k_mat = calculate_top_k(argsmax, top_k=3)
top_k_count += top_k_mat.sum(axis=0)
all_size += text_embeddings.shape[0]
all_motion_embeddings.append(motion_embeddings.cpu().numpy())
all_motion_embeddings = np.concatenate(all_motion_embeddings, axis=0)
matching_score = matching_score_sum / all_size
R_precision = top_k_count / all_size
match_score_dict[motion_loader_name] = matching_score
R_precision_dict[motion_loader_name] = R_precision
activation_dict[motion_loader_name] = all_motion_embeddings
print(f'---> [{motion_loader_name}] Matching Score: {matching_score:.4f}')
print(f'---> [{motion_loader_name}] Matching Score: {matching_score:.4f}', file=file, flush=True)
line = f'---> [{motion_loader_name}] R_precision: '
for i in range(len(R_precision)):
line += '(top %d): %.4f ' % (i+1, R_precision[i])
print(line)
print(line, file=file, flush=True)
return match_score_dict, R_precision_dict, activation_dict
def evaluate_fid(groundtruth_loader, activation_dict, file):
eval_dict = OrderedDict({})
gt_motion_embeddings = []
print('========== Evaluating FID ==========')
with torch.no_grad():
for idx, batch in enumerate(groundtruth_loader):
_, _, _, sent_lens, motions, m_lens, _ = batch
motion_embeddings = eval_wrapper.get_motion_embeddings(
motions=motions,
m_lens=m_lens
)
gt_motion_embeddings.append(motion_embeddings.cpu().numpy())
gt_motion_embeddings = np.concatenate(gt_motion_embeddings, axis=0)
gt_mu, gt_cov = calculate_activation_statistics(gt_motion_embeddings)
# print(gt_mu)
for model_name, motion_embeddings in activation_dict.items():
mu, cov = calculate_activation_statistics(motion_embeddings)
# print(mu)
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
print(f'---> [{model_name}] FID: {fid:.4f}')
print(f'---> [{model_name}] FID: {fid:.4f}', file=file, flush=True)
eval_dict[model_name] = fid
return eval_dict
def evaluate_diversity(activation_dict, file):
eval_dict = OrderedDict({})
print('========== Evaluating Diversity ==========')
for model_name, motion_embeddings in activation_dict.items():
diversity = calculate_diversity(motion_embeddings, diversity_times)
eval_dict[model_name] = diversity
print(f'---> [{model_name}] Diversity: {diversity:.4f}')
print(f'---> [{model_name}] Diversity: {diversity:.4f}', file=file, flush=True)
return eval_dict
def evaluate_multimodality(mm_motion_loaders, file):
eval_dict = OrderedDict({})
print('========== Evaluating MultiModality ==========')
for model_name, mm_motion_loader in mm_motion_loaders.items():
mm_motion_embeddings = []
with torch.no_grad():
for idx, batch in enumerate(mm_motion_loader):
# (1, mm_replications, dim_pos)
motions, m_lens = batch
motion_embedings = eval_wrapper.get_motion_embeddings(motions[0], m_lens[0])
mm_motion_embeddings.append(motion_embedings.unsqueeze(0))
if len(mm_motion_embeddings) == 0:
multimodality = 0
else:
mm_motion_embeddings = torch.cat(mm_motion_embeddings, dim=0).cpu().numpy()
multimodality = calculate_multimodality(mm_motion_embeddings, mm_num_times)
print(f'---> [{model_name}] Multimodality: {multimodality:.4f}')
print(f'---> [{model_name}] Multimodality: {multimodality:.4f}', file=file, flush=True)
eval_dict[model_name] = multimodality
return eval_dict
def get_metric_statistics(values):
mean = np.mean(values, axis=0)
std = np.std(values, axis=0)
conf_interval = 1.96 * std / np.sqrt(replication_times)
return mean, conf_interval
def evaluation(log_file):
with open(log_file, 'w') as f:
all_metrics = OrderedDict({'Matching Score': OrderedDict({}),
'R_precision': OrderedDict({}),
'FID': OrderedDict({}),
'Diversity': OrderedDict({}),
'MultiModality': OrderedDict({})})
for replication in range(replication_times):
motion_loaders = {}
mm_motion_loaders = {}
motion_loaders['ground truth'] = gt_loader
for motion_loader_name, motion_loader_getter in eval_motion_loaders.items():
motion_loader, mm_motion_loader = motion_loader_getter()
motion_loaders[motion_loader_name] = motion_loader
mm_motion_loaders[motion_loader_name] = mm_motion_loader
print(f'==================== Replication {replication} ====================')
print(f'==================== Replication {replication} ====================', file=f, flush=True)
print(f'Time: {datetime.now()}')
print(f'Time: {datetime.now()}', file=f, flush=True)
mat_score_dict, R_precision_dict, acti_dict = evaluate_matching_score(motion_loaders, f)
print(f'Time: {datetime.now()}')
print(f'Time: {datetime.now()}', file=f, flush=True)
fid_score_dict = evaluate_fid(gt_loader, acti_dict, f)
print(f'Time: {datetime.now()}')
print(f'Time: {datetime.now()}', file=f, flush=True)
div_score_dict = evaluate_diversity(acti_dict, f)
print(f'Time: {datetime.now()}')
print(f'Time: {datetime.now()}', file=f, flush=True)
mm_score_dict = evaluate_multimodality(mm_motion_loaders, f)
print(f'!!! DONE !!!')
print(f'!!! DONE !!!', file=f, flush=True)
for key, item in mat_score_dict.items():
if key not in all_metrics['Matching Score']:
all_metrics['Matching Score'][key] = [item]
else:
all_metrics['Matching Score'][key] += [item]
for key, item in R_precision_dict.items():
if key not in all_metrics['R_precision']:
all_metrics['R_precision'][key] = [item]
else:
all_metrics['R_precision'][key] += [item]
for key, item in fid_score_dict.items():
if key not in all_metrics['FID']:
all_metrics['FID'][key] = [item]
else:
all_metrics['FID'][key] += [item]
for key, item in div_score_dict.items():
if key not in all_metrics['Diversity']:
all_metrics['Diversity'][key] = [item]
else:
all_metrics['Diversity'][key] += [item]
for key, item in mm_score_dict.items():
if key not in all_metrics['MultiModality']:
all_metrics['MultiModality'][key] = [item]
else:
all_metrics['MultiModality'][key] += [item]
# print(all_metrics['Diversity'])
for metric_name, metric_dict in all_metrics.items():
print('========== %s Summary ==========' % metric_name)
print('========== %s Summary ==========' % metric_name, file=f, flush=True)
for model_name, values in metric_dict.items():
# print(metric_name, model_name)
mean, conf_interval = get_metric_statistics(np.array(values))
# print(mean, mean.dtype)
if isinstance(mean, np.float64) or isinstance(mean, np.float32):
print(f'---> [{model_name}] Mean: {mean:.4f} CInterval: {conf_interval:.4f}')
print(f'---> [{model_name}] Mean: {mean:.4f} CInterval: {conf_interval:.4f}', file=f, flush=True)
elif isinstance(mean, np.ndarray):
line = f'---> [{model_name}]'
for i in range(len(mean)):
line += '(top %d) Mean: %.4f CInt: %.4f;' % (i+1, mean[i], conf_interval[i])
print(line)
print(line, file=f, flush=True)
if __name__ == '__main__':
mm_num_samples = 100
mm_num_repeats = 30
mm_num_times = 10
diversity_times = 300
replication_times = 1
batch_size = 32
opt_path = sys.argv[1]
dataset_opt_path = opt_path
try:
device_id = int(sys.argv[2])
except:
device_id = 0
device = torch.device('cuda:%d' % device_id if torch.cuda.is_available() else 'cpu')
torch.cuda.set_device(device_id)
gt_loader, gt_dataset = get_dataset_motion_loader(dataset_opt_path, batch_size, device)
wrapper_opt = get_opt(dataset_opt_path, device)
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
opt = get_opt(opt_path, device)
encoder = build_models(opt, opt.dim_pose)
trainer = DDPMTrainer(opt, encoder)
eval_motion_loaders = {
'text2motion': lambda: get_motion_loader(
opt,
batch_size,
trainer,
gt_dataset,
mm_num_samples,
mm_num_repeats
)
}
log_file = './t2m_evaluation.log'
evaluation(log_file)