MotionDiffuse / datasets /evaluator_models.py
root
initial commit
12deb01
raw
history blame
16.1 kB
import torch
import torch.nn as nn
import numpy as np
import time
import math
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
# from networks.layers import *
import torch.nn.functional as F
class ContrastiveLoss(torch.nn.Module):
"""
Contrastive loss function.
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
"""
def __init__(self, margin=3.0):
super(ContrastiveLoss, self).__init__()
self.margin = margin
def forward(self, output1, output2, label):
euclidean_distance = F.pairwise_distance(output1, output2, keepdim=True)
loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) +
(label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2))
return loss_contrastive
def init_weight(m):
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
nn.init.xavier_normal_(m.weight)
# m.bias.data.fill_(0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def reparameterize(mu, logvar):
s_var = logvar.mul(0.5).exp_()
eps = s_var.data.new(s_var.size()).normal_()
return eps.mul(s_var).add_(mu)
# batch_size, dimension and position
# output: (batch_size, dim)
def positional_encoding(batch_size, dim, pos):
assert batch_size == pos.shape[0]
positions_enc = np.array([
[pos[j] / np.power(10000, (i-i%2)/dim) for i in range(dim)]
for j in range(batch_size)
], dtype=np.float32)
positions_enc[:, 0::2] = np.sin(positions_enc[:, 0::2])
positions_enc[:, 1::2] = np.cos(positions_enc[:, 1::2])
return torch.from_numpy(positions_enc).float()
def get_padding_mask(batch_size, seq_len, cap_lens):
cap_lens = cap_lens.data.tolist()
mask_2d = torch.ones((batch_size, seq_len, seq_len), dtype=torch.float32)
for i, cap_len in enumerate(cap_lens):
mask_2d[i, :, :cap_len] = 0
return mask_2d.bool(), 1 - mask_2d[:, :, 0].clone()
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=300):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
# pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, pos):
return self.pe[pos]
class MovementConvEncoder(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MovementConvEncoder, self).__init__()
self.main = nn.Sequential(
nn.Conv1d(input_size, hidden_size, 4, 2, 1),
nn.Dropout(0.2, inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(hidden_size, output_size, 4, 2, 1),
nn.Dropout(0.2, inplace=True),
nn.LeakyReLU(0.2, inplace=True),
)
self.out_net = nn.Linear(output_size, output_size)
self.main.apply(init_weight)
self.out_net.apply(init_weight)
def forward(self, inputs):
inputs = inputs.permute(0, 2, 1)
outputs = self.main(inputs).permute(0, 2, 1)
# print(outputs.shape)
return self.out_net(outputs)
class MovementConvDecoder(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MovementConvDecoder, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose1d(input_size, hidden_size, 4, 2, 1),
# nn.Dropout(0.2, inplace=True),
nn.LeakyReLU(0.2, inplace=True),
nn.ConvTranspose1d(hidden_size, output_size, 4, 2, 1),
# nn.Dropout(0.2, inplace=True),
nn.LeakyReLU(0.2, inplace=True),
)
self.out_net = nn.Linear(output_size, output_size)
self.main.apply(init_weight)
self.out_net.apply(init_weight)
def forward(self, inputs):
inputs = inputs.permute(0, 2, 1)
outputs = self.main(inputs).permute(0, 2, 1)
return self.out_net(outputs)
class TextVAEDecoder(nn.Module):
def __init__(self, text_size, input_size, output_size, hidden_size, n_layers):
super(TextVAEDecoder, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.hidden_size = hidden_size
self.n_layers = n_layers
self.emb = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.LayerNorm(hidden_size),
nn.LeakyReLU(0.2, inplace=True))
self.z2init = nn.Linear(text_size, hidden_size * n_layers)
self.gru = nn.ModuleList([nn.GRUCell(hidden_size, hidden_size) for i in range(self.n_layers)])
self.positional_encoder = PositionalEncoding(hidden_size)
self.output = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.LayerNorm(hidden_size),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(hidden_size, output_size)
)
#
# self.output = nn.Sequential(
# nn.Linear(hidden_size, hidden_size),
# nn.LayerNorm(hidden_size),
# nn.LeakyReLU(0.2, inplace=True),
# nn.Linear(hidden_size, output_size-4)
# )
# self.contact_net = nn.Sequential(
# nn.Linear(output_size-4, 64),
# nn.LayerNorm(64),
# nn.LeakyReLU(0.2, inplace=True),
# nn.Linear(64, 4)
# )
self.output.apply(init_weight)
self.emb.apply(init_weight)
self.z2init.apply(init_weight)
# self.contact_net.apply(init_weight)
def get_init_hidden(self, latent):
hidden = self.z2init(latent)
hidden = torch.split(hidden, self.hidden_size, dim=-1)
return list(hidden)
def forward(self, inputs, last_pred, hidden, p):
h_in = self.emb(inputs)
pos_enc = self.positional_encoder(p).to(inputs.device).detach()
h_in = h_in + pos_enc
for i in range(self.n_layers):
# print(h_in.shape)
hidden[i] = self.gru[i](h_in, hidden[i])
h_in = hidden[i]
pose_pred = self.output(h_in)
# pose_pred = self.output(h_in) + last_pred.detach()
# contact = self.contact_net(pose_pred)
# return torch.cat([pose_pred, contact], dim=-1), hidden
return pose_pred, hidden
class TextDecoder(nn.Module):
def __init__(self, text_size, input_size, output_size, hidden_size, n_layers):
super(TextDecoder, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.hidden_size = hidden_size
self.n_layers = n_layers
self.emb = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.LayerNorm(hidden_size),
nn.LeakyReLU(0.2, inplace=True))
self.gru = nn.ModuleList([nn.GRUCell(hidden_size, hidden_size) for i in range(self.n_layers)])
self.z2init = nn.Linear(text_size, hidden_size * n_layers)
self.positional_encoder = PositionalEncoding(hidden_size)
self.mu_net = nn.Linear(hidden_size, output_size)
self.logvar_net = nn.Linear(hidden_size, output_size)
self.emb.apply(init_weight)
self.z2init.apply(init_weight)
self.mu_net.apply(init_weight)
self.logvar_net.apply(init_weight)
def get_init_hidden(self, latent):
hidden = self.z2init(latent)
hidden = torch.split(hidden, self.hidden_size, dim=-1)
return list(hidden)
def forward(self, inputs, hidden, p):
# print(inputs.shape)
x_in = self.emb(inputs)
pos_enc = self.positional_encoder(p).to(inputs.device).detach()
x_in = x_in + pos_enc
for i in range(self.n_layers):
hidden[i] = self.gru[i](x_in, hidden[i])
h_in = hidden[i]
mu = self.mu_net(h_in)
logvar = self.logvar_net(h_in)
z = reparameterize(mu, logvar)
return z, mu, logvar, hidden
class AttLayer(nn.Module):
def __init__(self, query_dim, key_dim, value_dim):
super(AttLayer, self).__init__()
self.W_q = nn.Linear(query_dim, value_dim)
self.W_k = nn.Linear(key_dim, value_dim, bias=False)
self.W_v = nn.Linear(key_dim, value_dim)
self.softmax = nn.Softmax(dim=1)
self.dim = value_dim
self.W_q.apply(init_weight)
self.W_k.apply(init_weight)
self.W_v.apply(init_weight)
def forward(self, query, key_mat):
'''
query (batch, query_dim)
key (batch, seq_len, key_dim)
'''
# print(query.shape)
query_vec = self.W_q(query).unsqueeze(-1) # (batch, value_dim, 1)
val_set = self.W_v(key_mat) # (batch, seq_len, value_dim)
key_set = self.W_k(key_mat) # (batch, seq_len, value_dim)
weights = torch.matmul(key_set, query_vec) / np.sqrt(self.dim)
co_weights = self.softmax(weights) # (batch, seq_len, 1)
values = val_set * co_weights # (batch, seq_len, value_dim)
pred = values.sum(dim=1) # (batch, value_dim)
return pred, co_weights
def short_cut(self, querys, keys):
return self.W_q(querys), self.W_k(keys)
class TextEncoderBiGRU(nn.Module):
def __init__(self, word_size, pos_size, hidden_size, device):
super(TextEncoderBiGRU, self).__init__()
self.device = device
self.pos_emb = nn.Linear(pos_size, word_size)
self.input_emb = nn.Linear(word_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
# self.linear2 = nn.Linear(hidden_size, output_size)
self.input_emb.apply(init_weight)
self.pos_emb.apply(init_weight)
# self.linear2.apply(init_weight)
# self.batch_size = batch_size
self.hidden_size = hidden_size
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
# input(batch_size, seq_len, dim)
def forward(self, word_embs, pos_onehot, cap_lens):
num_samples = word_embs.shape[0]
pos_embs = self.pos_emb(pos_onehot)
inputs = word_embs + pos_embs
input_embs = self.input_emb(inputs)
hidden = self.hidden.repeat(1, num_samples, 1)
cap_lens = cap_lens.data.tolist()
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
gru_seq, gru_last = self.gru(emb, hidden)
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
gru_seq = pad_packed_sequence(gru_seq, batch_first=True)[0]
forward_seq = gru_seq[..., :self.hidden_size]
backward_seq = gru_seq[..., self.hidden_size:].clone()
# Concate the forward and backward word embeddings
for i, length in enumerate(cap_lens):
backward_seq[i:i+1, :length] = torch.flip(backward_seq[i:i+1, :length].clone(), dims=[1])
gru_seq = torch.cat([forward_seq, backward_seq], dim=-1)
return gru_seq, gru_last
class TextEncoderBiGRUCo(nn.Module):
def __init__(self, word_size, pos_size, hidden_size, output_size, device):
super(TextEncoderBiGRUCo, self).__init__()
self.device = device
self.pos_emb = nn.Linear(pos_size, word_size)
self.input_emb = nn.Linear(word_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
self.output_net = nn.Sequential(
nn.Linear(hidden_size * 2, hidden_size),
nn.LayerNorm(hidden_size),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(hidden_size, output_size)
)
self.input_emb.apply(init_weight)
self.pos_emb.apply(init_weight)
self.output_net.apply(init_weight)
# self.linear2.apply(init_weight)
# self.batch_size = batch_size
self.hidden_size = hidden_size
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
# input(batch_size, seq_len, dim)
def forward(self, word_embs, pos_onehot, cap_lens):
num_samples = word_embs.shape[0]
pos_embs = self.pos_emb(pos_onehot)
inputs = word_embs + pos_embs
input_embs = self.input_emb(inputs)
hidden = self.hidden.repeat(1, num_samples, 1)
cap_lens = cap_lens.data.tolist()
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
gru_seq, gru_last = self.gru(emb, hidden)
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
return self.output_net(gru_last)
class MotionEncoderBiGRUCo(nn.Module):
def __init__(self, input_size, hidden_size, output_size, device):
super(MotionEncoderBiGRUCo, self).__init__()
self.device = device
self.input_emb = nn.Linear(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
self.output_net = nn.Sequential(
nn.Linear(hidden_size*2, hidden_size),
nn.LayerNorm(hidden_size),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(hidden_size, output_size)
)
self.input_emb.apply(init_weight)
self.output_net.apply(init_weight)
self.hidden_size = hidden_size
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
# input(batch_size, seq_len, dim)
def forward(self, inputs, m_lens):
num_samples = inputs.shape[0]
input_embs = self.input_emb(inputs)
hidden = self.hidden.repeat(1, num_samples, 1)
cap_lens = m_lens.data.tolist()
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
gru_seq, gru_last = self.gru(emb, hidden)
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
return self.output_net(gru_last)
class MotionLenEstimatorBiGRU(nn.Module):
def __init__(self, word_size, pos_size, hidden_size, output_size):
super(MotionLenEstimatorBiGRU, self).__init__()
self.pos_emb = nn.Linear(pos_size, word_size)
self.input_emb = nn.Linear(word_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
nd = 512
self.output = nn.Sequential(
nn.Linear(hidden_size*2, nd),
nn.LayerNorm(nd),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(nd, nd // 2),
nn.LayerNorm(nd // 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(nd // 2, nd // 4),
nn.LayerNorm(nd // 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(nd // 4, output_size)
)
# self.linear2 = nn.Linear(hidden_size, output_size)
self.input_emb.apply(init_weight)
self.pos_emb.apply(init_weight)
self.output.apply(init_weight)
# self.linear2.apply(init_weight)
# self.batch_size = batch_size
self.hidden_size = hidden_size
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
# input(batch_size, seq_len, dim)
def forward(self, word_embs, pos_onehot, cap_lens):
num_samples = word_embs.shape[0]
pos_embs = self.pos_emb(pos_onehot)
inputs = word_embs + pos_embs
input_embs = self.input_emb(inputs)
hidden = self.hidden.repeat(1, num_samples, 1)
cap_lens = cap_lens.data.tolist()
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
gru_seq, gru_last = self.gru(emb, hidden)
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
return self.output(gru_last)