LMM / mogen /datasets /builder.py
mingyuan's picture
initial commit
373af33
import platform
import random
from functools import partial
from typing import Optional, Union
import numpy as np
from mmcv.parallel import collate
from mmcv.runner import get_dist_info
from mmcv.utils import Registry, build_from_cfg
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
from .samplers import (
DistributedSampler,
DistributedWeightedRandomSampler,
MonoTaskBatchSampler
)
if platform.system() != 'Windows':
# https://github.com/pytorch/pytorch/issues/973
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
base_soft_limit = rlimit[0]
hard_limit = rlimit[1]
soft_limit = min(max(4096, base_soft_limit), hard_limit)
resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit))
DATASETS = Registry('dataset')
PIPELINES = Registry('pipeline')
def build_dataset(cfg: Union[dict, list, tuple],
default_args: Optional[Union[dict, None]] = None):
""""Build dataset by the given config."""
from .dataset_wrappers import ConcatDataset, RepeatDataset
if isinstance(cfg, (list, tuple)):
dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg])
elif cfg['type'] == 'RepeatDataset':
dataset = RepeatDataset(build_dataset(cfg['dataset'], default_args),
cfg['times'])
else:
dataset = build_from_cfg(cfg, DATASETS, default_args)
return dataset
def build_dataloader(dataset: Dataset,
samples_per_gpu: int,
workers_per_gpu: int,
num_gpus: Optional[int] = 1,
dist: Optional[bool] = True,
shuffle: Optional[bool] = True,
round_up: Optional[bool] = True,
seed: Optional[Union[int, None]] = None,
sampler_cfg: Optional[dict] = None,
batch_sampler_cfg: Optional[dict] = None,
persistent_workers: Optional[bool] = True,
**kwargs):
"""Build PyTorch DataLoader.
In distributed training, each GPU/process has a dataloader.
In non-distributed training, there is only one dataloader for all GPUs.
Args:
dataset (:obj:`Dataset`): A PyTorch dataset.
samples_per_gpu (int): Number of training samples on each GPU, i.e.,
batch size of each GPU.
workers_per_gpu (int): How many subprocesses to use for data loading
for each GPU.
num_gpus (int, optional): Number of GPUs. Only used in non-distributed
training.
dist (bool, optional): Distributed training/test or not. Default: True.
shuffle (bool, optional): Whether to shuffle the data at every epoch.
Default: True.
round_up (bool, optional): Whether to round up the length of dataset by
adding extra samples to make it evenly divisible. Default: True.
kwargs: any keyword argument to be used to initialize DataLoader
Returns:
DataLoader: A PyTorch dataloader.
"""
rank, world_size = get_dist_info()
if dist:
weighted_sample = False
if sampler_cfg is not None:
weighted_sample = sampler_cfg.get('weighted_sample', False)
if weighted_sample:
sampler_cls = DistributedWeightedRandomSampler
else:
sampler_cls = DistributedSampler
sampler = sampler_cls(
dataset,
world_size,
rank,
shuffle=shuffle,
round_up=round_up
)
shuffle = False
batch_size = samples_per_gpu
num_workers = workers_per_gpu
else:
sampler = None
batch_size = num_gpus * samples_per_gpu
num_workers = num_gpus * workers_per_gpu
init_fn = partial(
worker_init_fn, num_workers=num_workers, rank=rank,
seed=seed) if seed is not None else None
if batch_sampler_cfg is not None:
type_name = batch_sampler_cfg['type']
assert type_name == 'MonoTaskBatchSampler'
batch_sampler = MonoTaskBatchSampler(
sampler=sampler,
batch_size=batch_size,
num_tasks = batch_sampler_cfg['num_tasks']
)
data_loader = DataLoader(
dataset,
batch_sampler=batch_sampler,
num_workers=num_workers,
collate_fn=partial(
collate, samples_per_gpu=samples_per_gpu),
pin_memory=False,
shuffle=shuffle,
worker_init_fn=init_fn,
persistent_workers=persistent_workers,
**kwargs)
else:
data_loader = DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=num_workers,
collate_fn=partial(
collate, samples_per_gpu=samples_per_gpu),
pin_memory=False,
shuffle=shuffle,
worker_init_fn=init_fn,
persistent_workers=persistent_workers,
**kwargs)
return data_loader
def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int):
"""Init random seed for each worker."""
# The seed of each worker equals to
# num_worker * rank + worker_id + user_seed
worker_seed = num_workers * rank + worker_id + seed
np.random.seed(worker_seed)
random.seed(worker_seed)