|
import platform |
|
import random |
|
from functools import partial |
|
from typing import Optional, Union |
|
|
|
import numpy as np |
|
from mmcv.parallel import collate |
|
from mmcv.runner import get_dist_info |
|
from mmcv.utils import Registry, build_from_cfg |
|
from torch.utils.data import DataLoader |
|
from torch.utils.data.dataset import Dataset |
|
|
|
from .samplers import ( |
|
DistributedSampler, |
|
DistributedWeightedRandomSampler, |
|
MonoTaskBatchSampler |
|
) |
|
|
|
if platform.system() != 'Windows': |
|
|
|
import resource |
|
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) |
|
base_soft_limit = rlimit[0] |
|
hard_limit = rlimit[1] |
|
soft_limit = min(max(4096, base_soft_limit), hard_limit) |
|
resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) |
|
|
|
DATASETS = Registry('dataset') |
|
PIPELINES = Registry('pipeline') |
|
|
|
|
|
def build_dataset(cfg: Union[dict, list, tuple], |
|
default_args: Optional[Union[dict, None]] = None): |
|
""""Build dataset by the given config.""" |
|
from .dataset_wrappers import ConcatDataset, RepeatDataset |
|
if isinstance(cfg, (list, tuple)): |
|
dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) |
|
elif cfg['type'] == 'RepeatDataset': |
|
dataset = RepeatDataset(build_dataset(cfg['dataset'], default_args), |
|
cfg['times']) |
|
else: |
|
dataset = build_from_cfg(cfg, DATASETS, default_args) |
|
|
|
return dataset |
|
|
|
|
|
def build_dataloader(dataset: Dataset, |
|
samples_per_gpu: int, |
|
workers_per_gpu: int, |
|
num_gpus: Optional[int] = 1, |
|
dist: Optional[bool] = True, |
|
shuffle: Optional[bool] = True, |
|
round_up: Optional[bool] = True, |
|
seed: Optional[Union[int, None]] = None, |
|
sampler_cfg: Optional[dict] = None, |
|
batch_sampler_cfg: Optional[dict] = None, |
|
persistent_workers: Optional[bool] = True, |
|
**kwargs): |
|
"""Build PyTorch DataLoader. |
|
In distributed training, each GPU/process has a dataloader. |
|
In non-distributed training, there is only one dataloader for all GPUs. |
|
Args: |
|
dataset (:obj:`Dataset`): A PyTorch dataset. |
|
samples_per_gpu (int): Number of training samples on each GPU, i.e., |
|
batch size of each GPU. |
|
workers_per_gpu (int): How many subprocesses to use for data loading |
|
for each GPU. |
|
num_gpus (int, optional): Number of GPUs. Only used in non-distributed |
|
training. |
|
dist (bool, optional): Distributed training/test or not. Default: True. |
|
shuffle (bool, optional): Whether to shuffle the data at every epoch. |
|
Default: True. |
|
round_up (bool, optional): Whether to round up the length of dataset by |
|
adding extra samples to make it evenly divisible. Default: True. |
|
kwargs: any keyword argument to be used to initialize DataLoader |
|
Returns: |
|
DataLoader: A PyTorch dataloader. |
|
""" |
|
rank, world_size = get_dist_info() |
|
if dist: |
|
weighted_sample = False |
|
if sampler_cfg is not None: |
|
weighted_sample = sampler_cfg.get('weighted_sample', False) |
|
if weighted_sample: |
|
sampler_cls = DistributedWeightedRandomSampler |
|
else: |
|
sampler_cls = DistributedSampler |
|
sampler = sampler_cls( |
|
dataset, |
|
world_size, |
|
rank, |
|
shuffle=shuffle, |
|
round_up=round_up |
|
) |
|
shuffle = False |
|
batch_size = samples_per_gpu |
|
num_workers = workers_per_gpu |
|
else: |
|
sampler = None |
|
batch_size = num_gpus * samples_per_gpu |
|
num_workers = num_gpus * workers_per_gpu |
|
|
|
init_fn = partial( |
|
worker_init_fn, num_workers=num_workers, rank=rank, |
|
seed=seed) if seed is not None else None |
|
|
|
if batch_sampler_cfg is not None: |
|
type_name = batch_sampler_cfg['type'] |
|
assert type_name == 'MonoTaskBatchSampler' |
|
batch_sampler = MonoTaskBatchSampler( |
|
sampler=sampler, |
|
batch_size=batch_size, |
|
num_tasks = batch_sampler_cfg['num_tasks'] |
|
) |
|
data_loader = DataLoader( |
|
dataset, |
|
batch_sampler=batch_sampler, |
|
num_workers=num_workers, |
|
collate_fn=partial( |
|
collate, samples_per_gpu=samples_per_gpu), |
|
pin_memory=False, |
|
shuffle=shuffle, |
|
worker_init_fn=init_fn, |
|
persistent_workers=persistent_workers, |
|
**kwargs) |
|
else: |
|
data_loader = DataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
sampler=sampler, |
|
num_workers=num_workers, |
|
collate_fn=partial( |
|
collate, samples_per_gpu=samples_per_gpu), |
|
pin_memory=False, |
|
shuffle=shuffle, |
|
worker_init_fn=init_fn, |
|
persistent_workers=persistent_workers, |
|
**kwargs) |
|
|
|
return data_loader |
|
|
|
|
|
def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int): |
|
"""Init random seed for each worker.""" |
|
|
|
|
|
worker_seed = num_workers * rank + worker_id + seed |
|
np.random.seed(worker_seed) |
|
random.seed(worker_seed) |
|
|