|
|
|
|
|
import torch |
|
|
|
|
|
class UNet(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.conv = torch.nn.Conv2d(2, 16, kernel_size=5, stride=(2, 2), padding=0) |
|
self.bn = torch.nn.BatchNorm2d( |
|
16, track_running_stats=True, eps=1e-3, momentum=0.01 |
|
) |
|
|
|
self.conv1 = torch.nn.Conv2d(16, 32, kernel_size=5, stride=(2, 2), padding=0) |
|
self.bn1 = torch.nn.BatchNorm2d( |
|
32, track_running_stats=True, eps=1e-3, momentum=0.01 |
|
) |
|
|
|
self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=5, stride=(2, 2), padding=0) |
|
self.bn2 = torch.nn.BatchNorm2d( |
|
64, track_running_stats=True, eps=1e-3, momentum=0.01 |
|
) |
|
|
|
self.conv3 = torch.nn.Conv2d(64, 128, kernel_size=5, stride=(2, 2), padding=0) |
|
self.bn3 = torch.nn.BatchNorm2d( |
|
128, track_running_stats=True, eps=1e-3, momentum=0.01 |
|
) |
|
|
|
self.conv4 = torch.nn.Conv2d(128, 256, kernel_size=5, stride=(2, 2), padding=0) |
|
self.bn4 = torch.nn.BatchNorm2d( |
|
256, track_running_stats=True, eps=1e-3, momentum=0.01 |
|
) |
|
|
|
self.conv5 = torch.nn.Conv2d(256, 512, kernel_size=5, stride=(2, 2), padding=0) |
|
|
|
self.up1 = torch.nn.ConvTranspose2d(512, 256, kernel_size=5, stride=2) |
|
self.bn5 = torch.nn.BatchNorm2d( |
|
256, track_running_stats=True, eps=1e-3, momentum=0.01 |
|
) |
|
|
|
self.up2 = torch.nn.ConvTranspose2d(512, 128, kernel_size=5, stride=2) |
|
self.bn6 = torch.nn.BatchNorm2d( |
|
128, track_running_stats=True, eps=1e-3, momentum=0.01 |
|
) |
|
|
|
self.up3 = torch.nn.ConvTranspose2d(256, 64, kernel_size=5, stride=2) |
|
self.bn7 = torch.nn.BatchNorm2d( |
|
64, track_running_stats=True, eps=1e-3, momentum=0.01 |
|
) |
|
|
|
self.up4 = torch.nn.ConvTranspose2d(128, 32, kernel_size=5, stride=2) |
|
self.bn8 = torch.nn.BatchNorm2d( |
|
32, track_running_stats=True, eps=1e-3, momentum=0.01 |
|
) |
|
|
|
self.up5 = torch.nn.ConvTranspose2d(64, 16, kernel_size=5, stride=2) |
|
self.bn9 = torch.nn.BatchNorm2d( |
|
16, track_running_stats=True, eps=1e-3, momentum=0.01 |
|
) |
|
|
|
self.up6 = torch.nn.ConvTranspose2d(32, 1, kernel_size=5, stride=2) |
|
self.bn10 = torch.nn.BatchNorm2d( |
|
1, track_running_stats=True, eps=1e-3, momentum=0.01 |
|
) |
|
|
|
|
|
self.up7 = torch.nn.Conv2d(1, 2, kernel_size=4, dilation=2, padding=3) |
|
|
|
def forward(self, x): |
|
in_x = x |
|
|
|
x = torch.nn.functional.pad(x, (1, 2, 1, 2), "constant", 0) |
|
conv1 = self.conv(x) |
|
batch1 = self.bn(conv1) |
|
rel1 = torch.nn.functional.leaky_relu(batch1, negative_slope=0.2) |
|
|
|
x = torch.nn.functional.pad(rel1, (1, 2, 1, 2), "constant", 0) |
|
conv2 = self.conv1(x) |
|
batch2 = self.bn1(conv2) |
|
rel2 = torch.nn.functional.leaky_relu( |
|
batch2, negative_slope=0.2 |
|
) |
|
|
|
x = torch.nn.functional.pad(rel2, (1, 2, 1, 2), "constant", 0) |
|
conv3 = self.conv2(x) |
|
batch3 = self.bn2(conv3) |
|
rel3 = torch.nn.functional.leaky_relu( |
|
batch3, negative_slope=0.2 |
|
) |
|
|
|
x = torch.nn.functional.pad(rel3, (1, 2, 1, 2), "constant", 0) |
|
conv4 = self.conv3(x) |
|
batch4 = self.bn3(conv4) |
|
rel4 = torch.nn.functional.leaky_relu( |
|
batch4, negative_slope=0.2 |
|
) |
|
|
|
x = torch.nn.functional.pad(rel4, (1, 2, 1, 2), "constant", 0) |
|
conv5 = self.conv4(x) |
|
batch5 = self.bn4(conv5) |
|
rel6 = torch.nn.functional.leaky_relu( |
|
batch5, negative_slope=0.2 |
|
) |
|
|
|
x = torch.nn.functional.pad(rel6, (1, 2, 1, 2), "constant", 0) |
|
conv6 = self.conv5(x) |
|
|
|
up1 = self.up1(conv6) |
|
up1 = up1[:, :, 1:-2, 1:-2] |
|
up1 = torch.nn.functional.relu(up1) |
|
batch7 = self.bn5(up1) |
|
merge1 = torch.cat([conv5, batch7], axis=1) |
|
|
|
up2 = self.up2(merge1) |
|
up2 = up2[:, :, 1:-2, 1:-2] |
|
up2 = torch.nn.functional.relu(up2) |
|
batch8 = self.bn6(up2) |
|
|
|
merge2 = torch.cat([conv4, batch8], axis=1) |
|
|
|
up3 = self.up3(merge2) |
|
up3 = up3[:, :, 1:-2, 1:-2] |
|
up3 = torch.nn.functional.relu(up3) |
|
batch9 = self.bn7(up3) |
|
|
|
merge3 = torch.cat([conv3, batch9], axis=1) |
|
|
|
up4 = self.up4(merge3) |
|
up4 = up4[:, :, 1:-2, 1:-2] |
|
up4 = torch.nn.functional.relu(up4) |
|
batch10 = self.bn8(up4) |
|
|
|
merge4 = torch.cat([conv2, batch10], axis=1) |
|
|
|
up5 = self.up5(merge4) |
|
up5 = up5[:, :, 1:-2, 1:-2] |
|
up5 = torch.nn.functional.relu(up5) |
|
batch11 = self.bn9(up5) |
|
|
|
merge5 = torch.cat([conv1, batch11], axis=1) |
|
|
|
up6 = self.up6(merge5) |
|
up6 = up6[:, :, 1:-2, 1:-2] |
|
up6 = torch.nn.functional.relu(up6) |
|
batch12 = self.bn10(up6) |
|
|
|
up7 = self.up7(batch12) |
|
up7 = torch.sigmoid(up7) |
|
|
|
return up7 * in_x |
|
|