|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import tempfile |
|
import time |
|
import urllib.request |
|
from datetime import datetime |
|
|
|
import gradio as gr |
|
import torch |
|
from pydub import AudioSegment |
|
|
|
from separate import load_audio, load_model, separate |
|
|
|
|
|
def build_html_output(s: str, style: str = "result_item_success"): |
|
return f""" |
|
<div class='result'> |
|
<div class='result_item {style}'> |
|
{s} |
|
</div> |
|
</div> |
|
""" |
|
|
|
|
|
def process_url(url: str): |
|
logging.info(f"Processing URL: {url}") |
|
with tempfile.NamedTemporaryFile() as f: |
|
try: |
|
urllib.request.urlretrieve(url, f.name) |
|
return process(in_filename=f.name) |
|
except Exception as e: |
|
logging.info(str(e)) |
|
return "", build_html_output(str(e), "result_item_error") |
|
|
|
|
|
def process_uploaded_file(in_filename: str): |
|
if in_filename is None or in_filename == "": |
|
return "", build_html_output( |
|
"Please first upload a file and then click " |
|
'the button "submit for separation"', |
|
"result_item_error", |
|
) |
|
|
|
logging.info(f"Processing uploaded file: {in_filename}") |
|
try: |
|
return process(in_filename=in_filename) |
|
except Exception as e: |
|
logging.info(str(e)) |
|
return "", build_html_output(str(e), "result_item_error") |
|
|
|
|
|
def process_microphone(in_filename: str): |
|
if in_filename is None or in_filename == "": |
|
return "", build_html_output( |
|
"Please first click 'Record from microphone', speak, " |
|
"click 'Stop recording', and then " |
|
"click the button 'submit for separation'", |
|
"result_item_error", |
|
) |
|
|
|
logging.info(f"Processing microphone: {in_filename}") |
|
try: |
|
return process(in_filename=in_filename) |
|
except Exception as e: |
|
logging.info(str(e)) |
|
return "", build_html_output(str(e), "result_item_error") |
|
|
|
|
|
@torch.no_grad() |
|
def process(in_filename: str): |
|
logging.info(f"in_filename: {in_filename}") |
|
|
|
waveform = load_audio(in_filename) |
|
duration = waveform.shape[0] / 44100 |
|
|
|
vocals = load_model("vocals.pt") |
|
accompaniment = load_model("accompaniment.pt") |
|
|
|
now = datetime.now() |
|
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") |
|
logging.info(f"Started at {date_time}") |
|
|
|
start = time.time() |
|
|
|
vocals_wave, accompaniment_wave = separate(vocals, accompaniment, waveform) |
|
|
|
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f") |
|
end = time.time() |
|
|
|
vocals_wave = (vocals_wave.t() * 32768).to(torch.int16) |
|
accompaniment_wave = (accompaniment_wave.t() * 32768).to(torch.int16) |
|
|
|
vocals_sound = AudioSegment( |
|
data=vocals_wave.numpy().tobytes(), sample_width=2, frame_rate=44100, channels=2 |
|
) |
|
vocals_filename = in_filename + "-vocals.mp3" |
|
vocals_sound.export(vocals_filename, format="mp3", bitrate="128k") |
|
|
|
accompaniment_sound = AudioSegment( |
|
data=accompaniment_wave.numpy().tobytes(), |
|
sample_width=2, |
|
frame_rate=44100, |
|
channels=2, |
|
) |
|
accompaniment_filename = in_filename + "-accompaniment.mp3" |
|
accompaniment_sound.export(accompaniment_filename, format="mp3", bitrate="128k") |
|
|
|
rtf = (end - start) / duration |
|
|
|
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s") |
|
|
|
info = f""" |
|
Input duration : {duration: .3f} s <br/> |
|
Processing time: {end - start: .3f} s <br/> |
|
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/> |
|
""" |
|
logging.info(info) |
|
|
|
return vocals_filename, accompaniment_filename, build_html_output(info) |
|
|
|
|
|
title = "# Music source separation with Spleeter in PyTorch" |
|
|
|
|
|
|
|
css = """ |
|
.result {display:flex;flex-direction:column} |
|
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} |
|
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} |
|
.result_item_error {background-color:#ff7070;color:white;align-self:start} |
|
""" |
|
|
|
|
|
demo = gr.Blocks(css=css) |
|
|
|
|
|
with demo: |
|
gr.Markdown(title) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("Upload from disk"): |
|
uploaded_file = gr.Audio( |
|
source="upload", |
|
type="filepath", |
|
optional=False, |
|
label="Upload from disk", |
|
) |
|
upload_button = gr.Button("Submit for separation") |
|
uploaded_html_info = gr.HTML(label="Info") |
|
|
|
uploaded_vocals = gr.Audio() |
|
uploaded_accompaniment = gr.Audio() |
|
|
|
gr.Examples( |
|
examples=["./yesterday-once-more-Carpenters.wav"], |
|
inputs=[uploaded_file], |
|
outputs=[uploaded_vocals, uploaded_accompaniment, uploaded_html_info], |
|
fn=process_uploaded_file, |
|
) |
|
|
|
with gr.TabItem("Record from microphone"): |
|
microphone = gr.Audio( |
|
source="microphone", |
|
type="filepath", |
|
optional=False, |
|
label="Record from microphone", |
|
) |
|
|
|
record_button = gr.Button("Submit for separation") |
|
recorded_html_info = gr.HTML(label="Info") |
|
|
|
recorded_vocals = gr.Audio() |
|
recorded_accompaniment = gr.Audio() |
|
|
|
gr.Examples( |
|
examples=["./yesterday-once-more-Carpenters.wav"], |
|
inputs=[microphone], |
|
outputs=[recorded_vocals, recorded_accompaniment, recorded_html_info], |
|
fn=process_microphone, |
|
) |
|
|
|
with gr.TabItem("From URL"): |
|
url_textbox = gr.Textbox( |
|
max_lines=1, |
|
placeholder="URL to an audio file", |
|
label="URL", |
|
interactive=True, |
|
) |
|
|
|
url_button = gr.Button("Submit for separation") |
|
url_html_info = gr.HTML(label="Info") |
|
|
|
url_vocals = gr.Audio() |
|
url_accompaniment = gr.Audio() |
|
|
|
upload_button.click( |
|
process_uploaded_file, |
|
inputs=[uploaded_file], |
|
outputs=[uploaded_vocals, uploaded_accompaniment, uploaded_html_info], |
|
) |
|
|
|
record_button.click( |
|
process_microphone, |
|
inputs=[microphone], |
|
outputs=[recorded_vocals, recorded_accompaniment, recorded_html_info], |
|
) |
|
|
|
url_button.click( |
|
process_url, |
|
inputs=[url_textbox], |
|
outputs=[url_vocals, url_accompaniment, url_html_info], |
|
) |
|
|
|
torch.set_num_threads(1) |
|
torch.set_num_interop_threads(1) |
|
|
|
torch._C._jit_set_profiling_executor(False) |
|
torch._C._jit_set_profiling_mode(False) |
|
torch._C._set_graph_executor_optimize(False) |
|
|
|
if __name__ == "__main__": |
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" |
|
|
|
logging.basicConfig(format=formatter, level=logging.INFO) |
|
|
|
demo.launch() |
|
|