github-actions
Update model + app from GitHub Actions
5c4388c
# src/train.py
import os
import pandas as pd
import joblib
import mlflow
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.metrics import precision_recall_fscore_support, accuracy_score
from src.preprocessing import preprocess_texts, build_vectorizer, save_vectorizer
DATA_PATH = "data/comments.csv"
MODEL_DIR = "model"
os.makedirs(MODEL_DIR, exist_ok=True)
def load_data(path=DATA_PATH):
df = pd.read_csv(path)
df = df.dropna(subset=["text","label"])
return df
def train():
mlflow.set_experiment("judi-comment-detector")
df = load_data()
texts = preprocess_texts(df["text"].tolist())
y = df["label"].astype(str).tolist()
# train-test split
X_train_texts, X_test_texts, y_train, y_test = train_test_split(
texts, y, test_size=0.2, stratify=y, random_state=42
)
# build vectorizer
vectorizer, X_train = build_vectorizer(X_train_texts)
save_vectorizer(vectorizer, os.path.join(MODEL_DIR, "vectorizer.joblib"))
# transform test
X_test = vectorizer.transform(X_test_texts)
# model (baseline)
model = LogisticRegression(max_iter=1000, class_weight="balanced", solver="liblinear")
with mlflow.start_run():
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
precision, recall, f1, _ = precision_recall_fscore_support(y_test, y_pred, average="binary", pos_label="judi")
acc = accuracy_score(y_test, y_pred)
mlflow.log_metric("precision", float(precision))
mlflow.log_metric("recall", float(recall))
mlflow.log_metric("f1_score", float(f1))
mlflow.log_metric("accuracy", float(acc))
model_path = os.path.join(MODEL_DIR, "saved_model.joblib")
joblib.dump(model, model_path)
mlflow.log_artifact(model_path, artifact_path="models")
print("Training finished. Metrics: precision=%.4f recall=%.4f f1=%.4f acc=%.4f" % (precision, recall, f1, acc))
print("Model saved to", model_path)
if __name__ == "__main__":
train()