Spaces:
Runtime error
Runtime error
import os | |
import requests | |
import json | |
import random | |
import gradio as gr | |
from PIL import Image | |
from io import BytesIO | |
from utils import get_token | |
def deliver_request(style, desc): | |
number = random.randint(1, 90) % 3 | |
print("node: ", number) | |
return generate_figure(style, desc, number) | |
def generate_figure(style, desc, number): | |
url_node1 = os.environ["url_node1"] | |
url_node2 = os.environ["url_node2"] | |
url_node3 = os.environ["url_node3"] | |
url_list = [url_node1, url_node2, url_node3] | |
requests_json = { | |
"user_name": "huggingface", | |
"style": style, | |
"desc": desc | |
} | |
headers = { | |
"Content-Type": "application/json", | |
"X-Auth-Token": token | |
} | |
response = requests.post(url_list[number], json=requests_json, headers=headers, verify=False) | |
response = json.loads(response.text) | |
status = response["status"] | |
assert status == 200 | |
url_list = response["output_image_url"] | |
image1 = Image.open(BytesIO(requests.get(url_list[0]).content)) | |
image2 = Image.open(BytesIO(requests.get(url_list[1]).content)) | |
image3 = Image.open(BytesIO(requests.get(url_list[2]).content)) | |
image4 = Image.open(BytesIO(requests.get(url_list[3]).content)) | |
return image1, image2, image3, image4 | |
def read_content(file_path: str) -> str: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
return content | |
token = get_token() | |
examples_style = ["宫崎骏", "新海诚", "梵高", "赛博朋克", "水彩", "莫奈"] | |
examples_desc = ["城市夜景", "海滩 美景", "一只猫", "摩天大楼", "鸢尾花", "秋水共长天一色"] | |
css = """ | |
.gradio-container {background-image: url('file=./background.jpg'); background-size:cover; background-repeat: no-repeat;} | |
#generate { | |
background: linear-gradient(#D8C5EB, #C5E8EB,#90CCF6); | |
border: 1px solid #C5E8EB; | |
border-radius: 8px; | |
color: #26498B | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML(read_content("./header.html")) | |
gr.Markdown("# MindSpore Wukong-Huahua " | |
"\nWukong-Huahua is a diffusion-based model that perfoms text-to-image task in Chinese, " | |
"which was developed by the Huawei Noah's Ark Lab in cooperation with " | |
"the Distributed & Parallel Software Lab and Ascend Product Develop Unit. " | |
"It was trained on Wukong dataset and used MindSpore + Ascend," | |
" a software and hardware solution to implement. Welcome to try Wukong-Huahua by Our Online Platform.") | |
with gr.Tab("图片生成 (Figure Generation)"): | |
style_input = gr.Textbox(lines=1, | |
placeholder="输入中文风格描述", | |
label="Input the style of figure you want to generate. (use Chinese better)", | |
elem_id="style-input") | |
gr.Examples( | |
examples=examples_style, | |
inputs=style_input, | |
) | |
with gr.Row(): | |
gr.Markdown(" *** ") | |
desc_input = gr.Textbox(lines=1, | |
placeholder="输入中文图片描述", | |
label="Input a sentence to describe the figure you want to generate. " | |
"(use Chinese better)") | |
gr.Examples( | |
examples=examples_desc, | |
inputs=desc_input, | |
) | |
generate_button = gr.Button("Generate", elem_id="generate") | |
with gr.Row(): | |
img_output1 = gr.Image(type="pil") | |
img_output2 = gr.Image(type="pil") | |
img_output3 = gr.Image(type="pil") | |
img_output4 = gr.Image(type="pil") | |
with gr.Accordion("Open for More!"): | |
gr.Markdown("- If you want to know more about the foundation models of MindSpore, please visit " | |
"[The Foundation Models Platform for Mindspore](https://xihe.mindspore.cn/)") | |
gr.Markdown("- If you want to know more about MindSpore-related diffusion models, please visit " | |
"[minddiffusion](https://github.com/mindspore-lab/minddiffusion)") | |
gr.Markdown("- Try [Wukong-Huahua model on the Foundation Models Platform for Mindspore]" | |
"(https://xihe.mindspore.cn/modelzoo/wukong)") | |
generate_button.click(deliver_request, | |
inputs=[style_input, desc_input], | |
outputs=[img_output1, img_output2, img_output3, img_output4]) | |
demo.queue(concurrency_count=3) | |
demo.launch() | |