Wukong-Huahua / app.py
drizzlezyk's picture
add demo queue
c8ac4c6
raw
history blame
4.53 kB
import os
import requests
import json
import random
import gradio as gr
from PIL import Image
from io import BytesIO
from utils import get_token
def deliver_request(style, desc):
number = random.randint(1, 90) % 3
print("node: ", number)
return generate_figure(style, desc, number)
def generate_figure(style, desc, number):
url_node1 = os.environ["url_node1"]
url_node2 = os.environ["url_node2"]
url_node3 = os.environ["url_node3"]
url_list = [url_node1, url_node2, url_node3]
requests_json = {
"user_name": "huggingface",
"style": style,
"desc": desc
}
headers = {
"Content-Type": "application/json",
"X-Auth-Token": token
}
response = requests.post(url_list[number], json=requests_json, headers=headers, verify=False)
response = json.loads(response.text)
status = response["status"]
assert status == 200
url_list = response["output_image_url"]
image1 = Image.open(BytesIO(requests.get(url_list[0]).content))
image2 = Image.open(BytesIO(requests.get(url_list[1]).content))
image3 = Image.open(BytesIO(requests.get(url_list[2]).content))
image4 = Image.open(BytesIO(requests.get(url_list[3]).content))
return image1, image2, image3, image4
def read_content(file_path: str) -> str:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
token = get_token()
examples_style = ["宫崎骏", "新海诚", "梵高", "赛博朋克", "水彩", "莫奈"]
examples_desc = ["城市夜景", "海滩 美景", "一只猫", "摩天大楼", "鸢尾花", "秋水共长天一色"]
css = """
.gradio-container {background-image: url('file=./background.jpg'); background-size:cover; background-repeat: no-repeat;}
#generate {
background: linear-gradient(#D8C5EB, #C5E8EB,#90CCF6);
border: 1px solid #C5E8EB;
border-radius: 8px;
color: #26498B
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(read_content("./header.html"))
gr.Markdown("# MindSpore Wukong-Huahua "
"\nWukong-Huahua is a diffusion-based model that perfoms text-to-image task in Chinese, "
"which was developed by the Huawei Noah's Ark Lab in cooperation with "
"the Distributed & Parallel Software Lab and Ascend Product Develop Unit. "
"It was trained on Wukong dataset and used MindSpore + Ascend,"
" a software and hardware solution to implement. Welcome to try Wukong-Huahua by Our Online Platform.")
with gr.Tab("图片生成 (Figure Generation)"):
style_input = gr.Textbox(lines=1,
placeholder="输入中文风格描述",
label="Input the style of figure you want to generate. (use Chinese better)",
elem_id="style-input")
gr.Examples(
examples=examples_style,
inputs=style_input,
)
with gr.Row():
gr.Markdown(" *** ")
desc_input = gr.Textbox(lines=1,
placeholder="输入中文图片描述",
label="Input a sentence to describe the figure you want to generate. "
"(use Chinese better)")
gr.Examples(
examples=examples_desc,
inputs=desc_input,
)
generate_button = gr.Button("Generate", elem_id="generate")
with gr.Row():
img_output1 = gr.Image(type="pil")
img_output2 = gr.Image(type="pil")
img_output3 = gr.Image(type="pil")
img_output4 = gr.Image(type="pil")
with gr.Accordion("Open for More!"):
gr.Markdown("- If you want to know more about the foundation models of MindSpore, please visit "
"[The Foundation Models Platform for Mindspore](https://xihe.mindspore.cn/)")
gr.Markdown("- If you want to know more about MindSpore-related diffusion models, please visit "
"[minddiffusion](https://github.com/mindspore-lab/minddiffusion)")
gr.Markdown("- Try [Wukong-Huahua model on the Foundation Models Platform for Mindspore]"
"(https://xihe.mindspore.cn/modelzoo/wukong)")
generate_button.click(deliver_request,
inputs=[style_input, desc_input],
outputs=[img_output1, img_output2, img_output3, img_output4])
demo.queue(concurrency_count=3)
demo.launch()