Spaces:
Runtime error
Runtime error
| from keras.models import load_model # TensorFlow is required for Keras to work | |
| from PIL import Image, ImageOps # Install pillow instead of PIL | |
| import numpy as np | |
| import gradio as gr | |
| import numpy as np | |
| # from PIL import Image, ImageOps | |
| # Load the model | |
| model = load_model("keras_model.h5", compile=False) | |
| # Load the labels | |
| class_names = open("labels.txt", "r",encoding="utf-8").readlines() | |
| def greet(img): | |
| data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) | |
| image = Image.fromarray(img).convert('RGB') | |
| size = (224, 224) | |
| image = ImageOps.fit(image, size, Image.ANTIALIAS) | |
| image_array = np.asarray(image) | |
| normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 | |
| data[0] = normalized_image_array | |
| prediction = model.predict(data) | |
| max_index = np.argmax(prediction) # 確率が一番高いインデクスを抽出 | |
| class_name = class_names[max_index] | |
| return class_name[2:] | |
| demo = gr.Interface( | |
| fn=greet, | |
| inputs=gr.Image(sources=["webcam"], streaming=True), | |
| outputs="text", | |
| ) | |
| # demo.launch(debug=True, share=True) | |
| demo.launch() |