historical-ocr / ocr_utils.py
milwright's picture
Update historical-ocr application with enhanced features
3f83f08 verified
raw
history blame
53.4 kB
"""
Utility functions for OCR processing with Mistral AI.
Contains helper functions for working with OCR responses and image handling.
"""
import json
import base64
import io
import zipfile
import logging
import numpy as np
import time
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Optional, Union, Any, Tuple
from functools import lru_cache
# Configure logging
logger = logging.getLogger("ocr_utils")
try:
from PIL import Image, ImageEnhance, ImageFilter, ImageOps
import cv2
PILLOW_AVAILABLE = True
CV2_AVAILABLE = True
except ImportError as e:
# Check which image libraries are available
if "PIL" in str(e):
PILLOW_AVAILABLE = False
if "cv2" in str(e):
CV2_AVAILABLE = False
from mistralai import DocumentURLChunk, ImageURLChunk, TextChunk
# Import configuration
try:
from config import IMAGE_PREPROCESSING
except ImportError:
# Fallback defaults if config not available
IMAGE_PREPROCESSING = {
"enhance_contrast": 1.5,
"sharpen": True,
"denoise": True,
"max_size_mb": 8.0,
"target_dpi": 300,
"compression_quality": 92
}
def replace_images_in_markdown(markdown_str: str, images_dict: dict) -> str:
"""
Replace image placeholders in markdown with base64-encoded images.
Args:
markdown_str: Markdown text containing image placeholders
images_dict: Dictionary mapping image IDs to base64 strings
Returns:
Markdown text with images replaced by base64 data
"""
for img_name, base64_str in images_dict.items():
markdown_str = markdown_str.replace(
f"![{img_name}]({img_name})", f"![{img_name}]({base64_str})"
)
return markdown_str
def get_combined_markdown(ocr_response) -> str:
"""
Combine OCR text and images into a single markdown document.
Args:
ocr_response: OCR response object from Mistral AI
Returns:
Combined markdown string with embedded images
"""
markdowns = []
# Process each page of the OCR response
for page in ocr_response.pages:
# Extract image data if available
image_data = {}
if hasattr(page, "images"):
for img in page.images:
if hasattr(img, "id") and hasattr(img, "image_base64"):
image_data[img.id] = img.image_base64
# Replace image placeholders with base64 data
page_markdown = page.markdown if hasattr(page, "markdown") else ""
processed_markdown = replace_images_in_markdown(page_markdown, image_data)
markdowns.append(processed_markdown)
# Join all pages' markdown with double newlines
return "\n\n".join(markdowns)
def encode_image_for_api(image_path: Union[str, Path]) -> str:
"""
Encode an image as base64 data URL for API submission.
Args:
image_path: Path to the image file
Returns:
Base64 data URL for the image
"""
# Convert to Path object if string
image_file = Path(image_path) if isinstance(image_path, str) else image_path
# Verify image exists
if not image_file.is_file():
raise FileNotFoundError(f"Image file not found: {image_file}")
# Encode image as base64
encoded = base64.b64encode(image_file.read_bytes()).decode()
return f"data:image/jpeg;base64,{encoded}"
def process_image_with_ocr(client, image_path: Union[str, Path], model: str = "mistral-ocr-latest"):
"""
Process an image with OCR and return the response.
Args:
client: Mistral AI client
image_path: Path to the image file
model: OCR model to use
Returns:
OCR response object
"""
# Encode image as base64
base64_data_url = encode_image_for_api(image_path)
# Process image with OCR
image_response = client.ocr.process(
document=ImageURLChunk(image_url=base64_data_url),
model=model
)
return image_response
def ocr_response_to_json(ocr_response, indent: int = 4) -> str:
"""
Convert OCR response to a formatted JSON string.
Args:
ocr_response: OCR response object
indent: Indentation level for JSON formatting
Returns:
Formatted JSON string
"""
# Convert OCR response to a dictionary
response_dict = {
"text": ocr_response.text if hasattr(ocr_response, "text") else "",
"pages": []
}
# Process pages if available
if hasattr(ocr_response, "pages"):
for page in ocr_response.pages:
page_dict = {
"text": page.text if hasattr(page, "text") else "",
"markdown": page.markdown if hasattr(page, "markdown") else "",
"images": []
}
# Process images if available
if hasattr(page, "images"):
for img in page.images:
img_dict = {
"id": img.id if hasattr(img, "id") else "",
"base64": img.image_base64 if hasattr(img, "image_base64") else ""
}
page_dict["images"].append(img_dict)
response_dict["pages"].append(page_dict)
# Convert dictionary to JSON
return json.dumps(response_dict, indent=indent)
def create_results_zip_in_memory(results):
"""
Create a zip file containing OCR results in memory.
Args:
results: Dictionary or list of OCR results
Returns:
Binary zip file data
"""
# Create a BytesIO object
zip_buffer = io.BytesIO()
# Check if results is a list or a dictionary
is_list = isinstance(results, list)
# Create zip file in memory
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zipf:
if is_list:
# Handle list of results
for i, result in enumerate(results):
try:
# Add JSON results for each file
result_json = json.dumps(result, indent=2)
zipf.writestr(f"results_{i+1}.json", result_json)
# Add HTML content (generated from the result)
html_content = create_html_with_images(result)
filename = result.get('file_name', f'document_{i+1}').split('.')[0]
zipf.writestr(f"{filename}_with_images.html", html_content)
# Add raw OCR text if available
if "ocr_contents" in result and "raw_text" in result["ocr_contents"]:
zipf.writestr(f"ocr_text_{i+1}.txt", result["ocr_contents"]["raw_text"])
# Add HTML visualization if available
if "html_visualization" in result:
zipf.writestr(f"visualization_{i+1}.html", result["html_visualization"])
# Add images if available (limit to conserve memory)
if "pages_data" in result:
for page_idx, page in enumerate(result["pages_data"]):
for img_idx, img in enumerate(page.get("images", [])[:3]): # Limit to first 3 images per page
img_base64 = img.get("image_base64", "")
if img_base64:
# Strip data URL prefix if present
if img_base64.startswith("data:image"):
img_base64 = img_base64.split(",", 1)[1]
# Decode base64 and add to zip
try:
img_data = base64.b64decode(img_base64)
zipf.writestr(f"images/result_{i+1}_page_{page_idx+1}_img_{img_idx+1}.jpg", img_data)
except:
pass
except Exception:
# If any result fails, skip it and continue
continue
else:
# Handle single result
try:
# Add JSON results
results_json = json.dumps(results, indent=2)
zipf.writestr("results.json", results_json)
# Add HTML content
html_content = create_html_with_images(results)
filename = results.get('file_name', 'document').split('.')[0]
zipf.writestr(f"{filename}_with_images.html", html_content)
# Add raw OCR text if available
if "ocr_contents" in results and "raw_text" in results["ocr_contents"]:
zipf.writestr("ocr_text.txt", results["ocr_contents"]["raw_text"])
# Add HTML visualization if available
if "html_visualization" in results:
zipf.writestr("visualization.html", results["html_visualization"])
# Add images if available
if "pages_data" in results:
for page_idx, page in enumerate(results["pages_data"]):
for img_idx, img in enumerate(page.get("images", [])):
img_base64 = img.get("image_base64", "")
if img_base64:
# Strip data URL prefix if present
if img_base64.startswith("data:image"):
img_base64 = img_base64.split(",", 1)[1]
# Decode base64 and add to zip
try:
img_data = base64.b64decode(img_base64)
zipf.writestr(f"images/page_{page_idx+1}_img_{img_idx+1}.jpg", img_data)
except:
pass
except Exception:
# If processing fails, return empty zip
pass
# Seek to the beginning of the BytesIO object
zip_buffer.seek(0)
# Return the zip file bytes
return zip_buffer.getvalue()
def create_results_zip(results, output_dir=None, zip_name=None):
"""
Create a zip file containing OCR results.
Args:
results: Dictionary or list of OCR results
output_dir: Optional output directory
zip_name: Optional zip file name
Returns:
Path to the created zip file
"""
# Create temporary output directory if not provided
if output_dir is None:
output_dir = Path.cwd() / "output"
output_dir.mkdir(exist_ok=True)
else:
output_dir = Path(output_dir)
output_dir.mkdir(exist_ok=True)
# Check if results is a list or a dictionary
is_list = isinstance(results, list)
# Generate zip name if not provided
if zip_name is None:
if is_list:
# For list of results, use timestamp and generic name
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
zip_name = f"ocr-results_{timestamp}.zip"
else:
# For single result, use original file's info
# Check if processed_at exists, otherwise use current timestamp
if "processed_at" in results:
timestamp = results.get("processed_at", "").replace(":", "-").replace(".", "-")
else:
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
file_name = results.get("file_name", "ocr-results")
zip_name = f"{file_name}_{timestamp}.zip"
try:
# Get zip data in memory first
zip_data = create_results_zip_in_memory(results)
# Save to file
zip_path = output_dir / zip_name
with open(zip_path, 'wb') as f:
f.write(zip_data)
return zip_path
except Exception as e:
# Create an empty zip file as fallback
zip_path = output_dir / zip_name
with zipfile.ZipFile(zip_path, 'w') as zipf:
zipf.writestr("info.txt", "Could not create complete archive")
return zip_path
# Advanced image preprocessing functions
def preprocess_image_for_ocr(image_path: Union[str, Path]) -> Tuple[Image.Image, str]:
"""
Preprocess an image for optimal OCR performance with enhanced speed and memory optimization.
Args:
image_path: Path to the image file
Returns:
Tuple of (processed PIL Image, base64 string)
"""
# Fast path: Skip all processing if PIL not available
if not PILLOW_AVAILABLE:
logger.info("PIL not available, skipping image preprocessing")
return None, encode_image_for_api(image_path)
# Convert to Path object if string
image_file = Path(image_path) if isinstance(image_path, str) else image_path
# Thread-safe caching with early exit for already processed images
try:
# Fast stat calls for file metadata - consolidate to reduce I/O
file_stat = image_file.stat()
file_size = file_stat.st_size
file_size_mb = file_size / (1024 * 1024)
mod_time = file_stat.st_mtime
# Create a cache key based on essential file properties
cache_key = f"{image_file.name}_{file_size}_{mod_time}"
# Fast path: Return cached result if available
if hasattr(preprocess_image_for_ocr, "_cache") and cache_key in preprocess_image_for_ocr._cache:
logger.debug(f"Using cached preprocessing result for {image_file.name}")
return preprocess_image_for_ocr._cache[cache_key]
# Optimization: Skip heavy processing for very small files
# Small images (less than 100KB) likely don't need preprocessing
if file_size < 100000: # 100KB
logger.info(f"Image {image_file.name} is small ({file_size/1024:.1f}KB), using minimal processing")
with Image.open(image_file) as img:
# Normalize mode only
if img.mode not in ('RGB', 'L'):
img = img.convert('RGB')
# Save with light optimization
buffer = io.BytesIO()
img.save(buffer, format="JPEG", quality=95, optimize=True)
buffer.seek(0)
# Get base64
encoded_image = base64.b64encode(buffer.getvalue()).decode()
base64_data_url = f"data:image/jpeg;base64,{encoded_image}"
# Cache and return
result = (img, base64_data_url)
if not hasattr(preprocess_image_for_ocr, "_cache"):
preprocess_image_for_ocr._cache = {}
# Clean cache if needed
if len(preprocess_image_for_ocr._cache) > 20: # Increased cache size for better performance
# Remove oldest 5 entries for better batch processing
for _ in range(5):
if preprocess_image_for_ocr._cache:
preprocess_image_for_ocr._cache.pop(next(iter(preprocess_image_for_ocr._cache)))
preprocess_image_for_ocr._cache[cache_key] = result
return result
except Exception as e:
# If stat or cache handling fails, log and continue with processing
logger.debug(f"Cache handling failed for {image_path}: {str(e)}")
# Ensure we have a valid file_size_mb for later decisions
try:
file_size_mb = image_file.stat().st_size / (1024 * 1024)
except:
file_size_mb = 0 # Default if we can't determine size
try:
# Process start time for performance logging
start_time = time.time()
# Open and process the image with minimal memory footprint
with Image.open(image_file) as img:
# Normalize image mode
if img.mode not in ('RGB', 'L'):
img = img.convert('RGB')
# Fast path: Quick check of image properties to determine appropriate processing
width, height = img.size
image_area = width * height
# Detect document type only for medium to large images to save processing time
is_document = False
if image_area > 500000: # Approx 700x700 or larger
# Store image for document detection
_detect_document_type_impl._current_img = img
is_document = _detect_document_type_impl(None)
logger.debug(f"Document type detection for {image_file.name}: {'document' if is_document else 'photo'}")
# Resize large images for API efficiency
if file_size_mb > IMAGE_PREPROCESSING["max_size_mb"] or max(width, height) > 3000:
# Calculate target dimensions directly instead of using the heavier resize function
target_width, target_height = width, height
max_dimension = max(width, height)
# Use a sliding scale for reduction based on image size
if max_dimension > 5000:
scale_factor = 0.25 # Aggressive reduction for very large images
elif max_dimension > 3000:
scale_factor = 0.4 # Significant reduction for large images
else:
scale_factor = 0.6 # Moderate reduction for medium images
# Calculate new dimensions
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
# Use direct resize with optimized resampling filter based on image size
if image_area > 3000000: # Very large, use faster but lower quality
processed_img = img.resize((new_width, new_height), Image.BILINEAR)
else: # Medium size, use better quality
processed_img = img.resize((new_width, new_height), Image.LANCZOS)
logger.debug(f"Resized image from {width}x{height} to {new_width}x{new_height}")
else:
# Skip resizing for smaller images
processed_img = img
# Apply appropriate processing based on document type and size
if is_document:
# Process as document with optimized path based on size
if image_area > 1000000: # Full processing for larger documents
preprocess_document_image._current_img = processed_img
processed = _preprocess_document_image_impl()
else: # Lightweight processing for smaller documents
# Just enhance contrast for small documents to save time
enhancer = ImageEnhance.Contrast(processed_img)
processed = enhancer.enhance(1.3)
else:
# Process as photo with optimized path based on size
if image_area > 1000000: # Full processing for larger photos
preprocess_general_image._current_img = processed_img
processed = _preprocess_general_image_impl()
else: # Skip processing for smaller photos
processed = processed_img
# Optimize memory handling during encoding
buffer = io.BytesIO()
# Adjust quality based on image size to optimize API payload
if file_size_mb > 5:
quality = 85 # Lower quality for large files
else:
quality = IMAGE_PREPROCESSING["compression_quality"]
# Save with optimized parameters
processed.save(buffer, format="JPEG", quality=quality, optimize=True)
buffer.seek(0)
# Get base64 with minimal memory footprint
encoded_image = base64.b64encode(buffer.getvalue()).decode()
base64_data_url = f"data:image/jpeg;base64,{encoded_image}"
# Update cache thread-safely
result = (processed, base64_data_url)
if not hasattr(preprocess_image_for_ocr, "_cache"):
preprocess_image_for_ocr._cache = {}
# LRU-like cache management with improved clearing
if len(preprocess_image_for_ocr._cache) > 20:
try:
# Remove several entries to avoid frequent cache clearing
for _ in range(5):
if preprocess_image_for_ocr._cache:
preprocess_image_for_ocr._cache.pop(next(iter(preprocess_image_for_ocr._cache)))
except:
# If removal fails, just continue
pass
# Add to cache
try:
preprocess_image_for_ocr._cache[cache_key] = result
except Exception:
# If caching fails, just proceed
pass
# Log performance metrics
processing_time = time.time() - start_time
logger.debug(f"Image preprocessing completed in {processing_time:.3f}s for {image_file.name}")
# Return both processed image and base64 string
return result
except Exception as e:
# If preprocessing fails, log error and use original image
logger.warning(f"Image preprocessing failed: {str(e)}. Using original image.")
return None, encode_image_for_api(image_path)
# Removed caching decorator to fix unhashable type error
def detect_document_type(img: Image.Image) -> bool:
"""
Detect if an image is likely a document (text-heavy) vs. a photo.
Args:
img: PIL Image object
Returns:
True if likely a document, False otherwise
"""
# Direct implementation without caching
return _detect_document_type_impl(None)
def _detect_document_type_impl(img_hash=None) -> bool:
"""
Optimized implementation of document type detection for faster processing.
The img_hash parameter is unused but kept for backward compatibility.
Enhanced to better detect handwritten documents.
"""
# Fast path: Get the image from thread-local storage
if not hasattr(_detect_document_type_impl, "_current_img"):
return False # Fail safe in case image is not set
img = _detect_document_type_impl._current_img
# Skip processing for tiny images - just classify as non-documents
width, height = img.size
if width * height < 100000: # Approx 300x300 or smaller
return False
# Convert to grayscale for analysis (using faster conversion)
gray_img = img.convert('L')
# PIL-only path for systems without OpenCV
if not CV2_AVAILABLE:
# Faster method: Sample a subset of the image for edge detection
# Downscale image for faster processing
sample_size = min(width, height, 1000)
scale_factor = sample_size / max(width, height)
if scale_factor < 0.9: # Only resize if significant reduction
sample_img = gray_img.resize(
(int(width * scale_factor), int(height * scale_factor)),
Image.NEAREST # Fastest resampling method
)
else:
sample_img = gray_img
# Fast edge detection on sample
edges = sample_img.filter(ImageFilter.FIND_EDGES)
# Count edge pixels using threshold (faster than summing individual pixels)
edge_data = edges.getdata()
edge_threshold = 40 # Lowered threshold to better detect handwritten texts
# Use list comprehension for better performance
edge_count = sum(1 for p in edge_data if p > edge_threshold)
total_pixels = len(edge_data)
edge_ratio = edge_count / total_pixels
# Check if bright areas exist - simple approximation of text/background contrast
bright_count = sum(1 for p in gray_img.getdata() if p > 200)
bright_ratio = bright_count / (width * height)
# Documents typically have more edges (text boundaries) and bright areas (background)
# Lowered edge threshold to better detect handwritten documents
return edge_ratio > 0.035 or bright_ratio > 0.4
# OpenCV path - optimized for speed and enhanced for handwritten documents
img_np = np.array(gray_img)
# 1. Fast check: Variance of pixel values
# Documents typically have high variance (text on background)
# Handwritten documents may have less contrast than printed text
std_dev = np.std(img_np)
if std_dev > 45: # Lowered threshold to better detect handwritten documents
return True
# 2. Quick check using downsampled image for edges
# Downscale for faster processing on large images
if max(img_np.shape) > 1000:
scale = 1000 / max(img_np.shape)
small_img = cv2.resize(img_np, None, fx=scale, fy=scale, interpolation=cv2.INTER_NEAREST)
else:
small_img = img_np
# Use adaptive edge detection parameters for handwritten documents
# Lowered threshold to better detect fainter handwritten text
edges = cv2.Canny(small_img, 30, 130, L2gradient=False)
edge_ratio = np.count_nonzero(edges) / edges.size
# 3. Fast histogram approximation using bins
# Instead of calculating full histogram, use bins for dark and light regions
# Adjusted for handwritten documents which may have more gray values
dark_mask = img_np < 60 # Increased threshold to capture lighter handwritten text
light_mask = img_np > 180 # Lowered threshold to account for aged paper
dark_ratio = np.count_nonzero(dark_mask) / img_np.size
light_ratio = np.count_nonzero(light_mask) / img_np.size
# Special analysis for handwritten documents
# Check for line-like structures typical in handwritten text
if CV2_AVAILABLE and edge_ratio > 0.02: # Lower threshold to capture handwritten documents
# Try to find line segments that could indicate text lines
lines = cv2.HoughLinesP(edges, 1, np.pi/180,
threshold=50, # Lower threshold for detection
minLineLength=30, # Shorter lines for handwriting
maxLineGap=20) # Larger gap for discontinuous handwriting
# If we find enough line segments, it's likely a document with text
if lines is not None and len(lines) > 10:
return True
# Combine heuristics for final decision
# Documents typically have both dark (text) and light (background) regions,
# and/or well-defined edges
# Lower thresholds for handwritten documents
return (dark_ratio > 0.03 and light_ratio > 0.25) or edge_ratio > 0.03
# Removed caching to fix unhashable type error
def preprocess_document_image(img: Image.Image) -> Image.Image:
"""
Preprocess a document image for optimal OCR.
Args:
img: PIL Image object
Returns:
Processed PIL Image
"""
# Store the image for the implementation function
preprocess_document_image._current_img = img
# The actual implementation is separated for cleaner code organization
return _preprocess_document_image_impl()
def _preprocess_document_image_impl() -> Image.Image:
"""
Optimized implementation of document preprocessing with adaptive processing based on image size.
Enhanced for better handwritten document processing.
"""
# Fast path: Get image from thread-local storage
if not hasattr(preprocess_document_image, "_current_img"):
raise ValueError("No image set for document preprocessing")
img = preprocess_document_image._current_img
# Analyze image size to determine processing strategy
width, height = img.size
img_size = width * height
# Check if the image might be a handwritten document - use special processing
is_handwritten = False
try:
# Simple check for handwritten document characteristics
# Handwritten documents often have more varied strokes and less stark contrast
if CV2_AVAILABLE:
# Convert to grayscale and calculate local variance
gray_np = np.array(img.convert('L'))
# Higher variance in edge strengths can indicate handwriting
edges = cv2.Canny(gray_np, 30, 100)
if np.count_nonzero(edges) / edges.size > 0.02: # Low edge threshold for handwriting
# Additional check with gradient magnitudes
sobelx = cv2.Sobel(gray_np, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(gray_np, cv2.CV_64F, 0, 1, ksize=3)
magnitude = np.sqrt(sobelx**2 + sobely**2)
# Handwriting typically has more variation in gradient magnitudes
if np.std(magnitude) > 20:
is_handwritten = True
except:
# If detection fails, assume it's not handwritten
pass
# Ultra-fast path for tiny images - just convert to grayscale with contrast enhancement
if img_size < 300000: # ~500x600 or smaller
gray = img.convert('L')
# Lower contrast enhancement for handwritten documents
contrast_level = 1.4 if is_handwritten else IMAGE_PREPROCESSING["enhance_contrast"]
enhancer = ImageEnhance.Contrast(gray)
return enhancer.enhance(contrast_level)
# Fast path for small images - minimal processing
if img_size < 1000000: # ~1000x1000 or smaller
gray = img.convert('L')
# Use gentler contrast enhancement for handwritten documents
contrast_level = 1.4 if is_handwritten else IMAGE_PREPROCESSING["enhance_contrast"]
enhancer = ImageEnhance.Contrast(gray)
enhanced = enhancer.enhance(contrast_level)
# Light sharpening only if sharpen is enabled
# Use milder sharpening for handwritten documents to preserve stroke detail
if IMAGE_PREPROCESSING["sharpen"]:
if is_handwritten:
# Use edge enhancement which is gentler than SHARPEN for handwriting
enhanced = enhanced.filter(ImageFilter.EDGE_ENHANCE)
else:
enhanced = enhanced.filter(ImageFilter.SHARPEN)
return enhanced
# Standard path for medium images
# Convert to grayscale (faster processing)
gray = img.convert('L')
# Adaptive contrast enhancement based on document type
contrast_level = 1.4 if is_handwritten else IMAGE_PREPROCESSING["enhance_contrast"]
enhancer = ImageEnhance.Contrast(gray)
enhanced = enhancer.enhance(contrast_level)
# Apply light sharpening for text clarity - adapt based on document type
if IMAGE_PREPROCESSING["sharpen"]:
if is_handwritten:
# Use edge enhancement which is gentler than SHARPEN for handwriting
enhanced = enhanced.filter(ImageFilter.EDGE_ENHANCE)
else:
enhanced = enhanced.filter(ImageFilter.SHARPEN)
# Advanced processing with OpenCV if available
if CV2_AVAILABLE and IMAGE_PREPROCESSING["denoise"]:
try:
# Convert to numpy array for OpenCV processing
img_np = np.array(enhanced)
if is_handwritten:
# Special treatment for handwritten documents
# Use guided filter which preserves edges better than NLMeans
# Guided filter works well for handwriting by preserving stroke details
if img_size > 3000000: # Large images - downsample first
scale_factor = 0.5
small_img = cv2.resize(img_np, None, fx=scale_factor, fy=scale_factor,
interpolation=cv2.INTER_AREA)
# Apply bilateral filter which preserves edges while smoothing
filtered = cv2.bilateralFilter(small_img, 9, 75, 75)
# Resize back
filtered = cv2.resize(filtered, (width, height), interpolation=cv2.INTER_LINEAR)
else:
# Use bilateral filter directly for smaller images
filtered = cv2.bilateralFilter(img_np, 7, 50, 50)
# Convert back to PIL Image
enhanced = Image.fromarray(filtered)
# For handwritten docs, avoid binary thresholding which can destroy subtle strokes
return enhanced
else:
# Standard document processing - optimized for printed text
# Optimize denoising parameters based on image size
if img_size > 4000000: # Very large images
# More aggressive downsampling for very large images
scale_factor = 0.5
downsample = cv2.resize(img_np, None, fx=scale_factor, fy=scale_factor,
interpolation=cv2.INTER_AREA)
# Lighter denoising for downsampled image
h_value = 7 # Strength parameter
template_window = 5
search_window = 13
# Apply denoising on smaller image
denoised_np = cv2.fastNlMeansDenoising(downsample, None, h_value, template_window, search_window)
# Resize back to original size
denoised_np = cv2.resize(denoised_np, (width, height), interpolation=cv2.INTER_LINEAR)
else:
# Direct denoising for medium-large images
h_value = 8 # Balanced for speed and quality
template_window = 5
search_window = 15
# Apply denoising
denoised_np = cv2.fastNlMeansDenoising(img_np, None, h_value, template_window, search_window)
# Convert back to PIL Image
enhanced = Image.fromarray(denoised_np)
# Apply adaptive thresholding only if it improves text visibility
# Create a binarized version of the image
if img_size < 8000000: # Skip for extremely large images to save processing time
binary = cv2.adaptiveThreshold(denoised_np, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY, 11, 2)
# Quick verification that binarization preserves text information
# Use simplified check that works well for document images
white_pixels_binary = np.count_nonzero(binary > 200)
white_pixels_orig = np.count_nonzero(denoised_np > 200)
# Check if binary preserves reasonable amount of white pixels (background)
if white_pixels_binary > white_pixels_orig * 0.8:
# Binarization looks good, use it
return Image.fromarray(binary)
return enhanced
except Exception as e:
# If OpenCV processing fails, continue with PIL-enhanced image
pass
elif IMAGE_PREPROCESSING["denoise"]:
# Fallback PIL denoising for systems without OpenCV
if is_handwritten:
# Lighter filtering for handwritten text to preserve details
# Use a smaller median filter for handwritten documents
enhanced = enhanced.filter(ImageFilter.MedianFilter(1))
else:
# Standard filtering for printed documents
enhanced = enhanced.filter(ImageFilter.MedianFilter(3))
# Return enhanced grayscale image
return enhanced
# Removed caching to fix unhashable type error
def preprocess_general_image(img: Image.Image) -> Image.Image:
"""
Preprocess a general image for OCR.
Args:
img: PIL Image object
Returns:
Processed PIL Image
"""
# Store the image for implementation function
preprocess_general_image._current_img = img
return _preprocess_general_image_impl()
def _preprocess_general_image_impl() -> Image.Image:
"""
Optimized implementation of general image preprocessing with size-based processing paths
"""
# Fast path: Get the image from thread-local storage
if not hasattr(preprocess_general_image, "_current_img"):
raise ValueError("No image set for general preprocessing")
img = preprocess_general_image._current_img
# Ultra-fast path: Skip processing completely for small images to improve performance
width, height = img.size
img_size = width * height
if img_size < 300000: # Skip for tiny images under ~0.3 megapixel
# Just ensure correct color mode
if img.mode != 'RGB':
return img.convert('RGB')
return img
# Fast path: Minimal processing for smaller images
if img_size < 600000: # ~800x750 or smaller
# Ensure RGB mode
if img.mode != 'RGB':
img = img.convert('RGB')
# Very light contrast enhancement only
enhancer = ImageEnhance.Contrast(img)
return enhancer.enhance(1.15) # Lighter enhancement for small images
# Standard path: Apply moderate enhancements for medium images
# Convert to RGB to ensure compatibility
if img.mode != 'RGB':
img = img.convert('RGB')
# Moderate enhancement only
enhancer = ImageEnhance.Contrast(img)
enhanced = enhancer.enhance(1.2) # Less aggressive than document enhancement
# Skip additional processing for medium-sized images
if img_size < 1000000: # Skip for images under ~1 megapixel
return enhanced
# Enhanced path: Additional processing for larger images
try:
# Apply optimized enhancement pipeline for large non-document images
# 1. Improve color saturation slightly for better feature extraction
saturation = ImageEnhance.Color(enhanced)
enhanced = saturation.enhance(1.1)
# 2. Apply adaptive sharpening based on image size
if img_size > 2500000: # Very large images (~1600x1600 or larger)
# Use EDGE_ENHANCE instead of SHARPEN for more subtle enhancement on large images
enhanced = enhanced.filter(ImageFilter.EDGE_ENHANCE)
else:
# Standard sharpening for regular large images
enhanced = enhanced.filter(ImageFilter.SHARPEN)
# 3. Apply additional processing with OpenCV if available (for largest images)
if CV2_AVAILABLE and img_size > 3000000:
# Convert to numpy array
img_np = np.array(enhanced)
# Apply subtle enhancement of details (CLAHE)
try:
# Convert to LAB color space for better processing
lab = cv2.cvtColor(img_np, cv2.COLOR_RGB2LAB)
# Only enhance the L channel (luminance)
l, a, b = cv2.split(lab)
# Create CLAHE object with optimal parameters for photos
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
# Apply CLAHE to L channel
l = clahe.apply(l)
# Merge channels back and convert to RGB
lab = cv2.merge((l, a, b))
enhanced_np = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
# Convert back to PIL
enhanced = Image.fromarray(enhanced_np)
except:
# If CLAHE fails, continue with PIL-enhanced image
pass
except Exception:
# If any enhancement fails, fall back to basic contrast enhancement
if img.mode != 'RGB':
img = img.convert('RGB')
enhancer = ImageEnhance.Contrast(img)
enhanced = enhancer.enhance(1.2)
return enhanced
# Removed caching decorator to fix unhashable type error
def resize_image(img: Image.Image, target_dpi: int = 300) -> Image.Image:
"""
Resize an image to an optimal size for OCR while preserving quality.
Args:
img: PIL Image object
target_dpi: Target DPI (dots per inch)
Returns:
Resized PIL Image
"""
# Store the image for implementation function
resize_image._current_img = img
return resize_image_impl(target_dpi)
def resize_image_impl(target_dpi: int = 300) -> Image.Image:
"""
Implementation of resize function that uses thread-local storage.
Args:
target_dpi: Target DPI (dots per inch)
Returns:
Resized PIL Image
"""
# Get the image from thread-local storage (set by the caller)
if not hasattr(resize_image, "_current_img"):
raise ValueError("No image set for resizing")
img = resize_image._current_img
# Calculate current dimensions
width, height = img.size
# Fixed target dimensions based on DPI
# Using 8.5x11 inches (standard paper size) as reference
max_width = int(8.5 * target_dpi)
max_height = int(11 * target_dpi)
# Check if resizing is needed - quick early return
if width <= max_width and height <= max_height:
return img # No resizing needed
# Calculate scaling factor once
scale_factor = min(max_width / width, max_height / height)
# Calculate new dimensions
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
# Use BICUBIC for better balance of speed and quality
return img.resize((new_width, new_height), Image.BICUBIC)
def calculate_image_entropy(img: Image.Image) -> float:
"""
Calculate the entropy (information content) of an image.
Args:
img: PIL Image object
Returns:
Entropy value
"""
# Convert to grayscale
if img.mode != 'L':
img = img.convert('L')
# Calculate histogram
histogram = img.histogram()
total_pixels = img.width * img.height
# Calculate entropy
entropy = 0
for h in histogram:
if h > 0:
probability = h / total_pixels
entropy -= probability * np.log2(probability)
return entropy
def create_html_with_images(result):
"""
Create an HTML document with embedded images from OCR results.
Args:
result: OCR result dictionary containing pages_data
Returns:
HTML content as string
"""
# Create HTML document structure
html_content = """
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>OCR Document with Images</title>
<style>
body {
font-family: Georgia, serif;
line-height: 1.7;
margin: 0 auto;
max-width: 800px;
padding: 20px;
}
img {
max-width: 90%;
max-height: 500px;
object-fit: contain;
margin: 20px auto;
display: block;
border: 1px solid #ddd;
border-radius: 4px;
}
.image-container {
margin: 20px 0;
text-align: center;
}
.page-break {
border-top: 1px solid #ddd;
margin: 40px 0;
padding-top: 40px;
}
h3 {
color: #333;
border-bottom: 1px solid #eee;
padding-bottom: 10px;
}
p {
margin: 12px 0;
}
.page-text-content {
margin-bottom: 20px;
}
.text-block {
background-color: #f9f9f9;
padding: 15px;
border-radius: 4px;
border-left: 3px solid #546e7a;
margin-bottom: 15px;
color: #333;
}
.text-block p {
margin: 8px 0;
color: #333;
}
.metadata {
background-color: #f5f5f5;
padding: 10px 15px;
border-radius: 4px;
margin-bottom: 20px;
font-size: 14px;
}
.metadata p {
margin: 5px 0;
}
</style>
</head>
<body>
"""
# Add document metadata
html_content += f"""
<div class="metadata">
<h2>{result.get('file_name', 'Document')}</h2>
<p><strong>Processed at:</strong> {result.get('timestamp', '')}</p>
<p><strong>Languages:</strong> {', '.join(result.get('languages', ['Unknown']))}</p>
<p><strong>Topics:</strong> {', '.join(result.get('topics', ['Unknown']))}</p>
</div>
"""
# Check if we have pages_data
if 'pages_data' in result and result['pages_data']:
pages_data = result['pages_data']
# Process each page
for i, page in enumerate(pages_data):
page_markdown = page.get('markdown', '')
images = page.get('images', [])
# Add page header if multi-page
if len(pages_data) > 1:
html_content += f"<h3>Page {i+1}</h3>"
# Create image dictionary
image_dict = {}
for img in images:
if 'id' in img and 'image_base64' in img:
image_dict[img['id']] = img['image_base64']
# Process the markdown content
if page_markdown:
# Extract text content (lines without images)
text_content = []
image_lines = []
for line in page_markdown.split('\n'):
if '![' in line and '](' in line:
image_lines.append(line)
elif line.strip():
text_content.append(line)
# Add text content
if text_content:
html_content += '<div class="text-block">'
for line in text_content:
html_content += f"<p>{line}</p>"
html_content += '</div>'
# Add images
for line in image_lines:
# Extract image ID and alt text using simple parsing
try:
alt_start = line.find('![') + 2
alt_end = line.find(']', alt_start)
alt_text = line[alt_start:alt_end]
img_start = line.find('(', alt_end) + 1
img_end = line.find(')', img_start)
img_id = line[img_start:img_end]
if img_id in image_dict:
html_content += f'<div class="image-container">'
html_content += f'<img src="{image_dict[img_id]}" alt="{alt_text}">'
html_content += f'</div>'
except:
# If parsing fails, just skip this image
continue
# Add page separator if not the last page
if i < len(pages_data) - 1:
html_content += '<div class="page-break"></div>'
# Add structured content if available
if 'ocr_contents' in result and isinstance(result['ocr_contents'], dict):
html_content += '<h3>Structured Content</h3>'
for section, content in result['ocr_contents'].items():
if content and section not in ['error', 'raw_text', 'partial_text']:
html_content += f'<h4>{section.replace("_", " ").title()}</h4>'
if isinstance(content, str):
html_content += f'<p>{content}</p>'
elif isinstance(content, list):
html_content += '<ul>'
for item in content:
html_content += f'<li>{str(item)}</li>'
html_content += '</ul>'
elif isinstance(content, dict):
html_content += '<dl>'
for k, v in content.items():
html_content += f'<dt>{k}</dt><dd>{v}</dd>'
html_content += '</dl>'
# Close HTML document
html_content += """
</body>
</html>
"""
return html_content
def generate_document_thumbnail(image_path: Union[str, Path], max_size: int = 300) -> str:
"""
Generate a thumbnail for document preview.
Args:
image_path: Path to the image file
max_size: Maximum dimension for thumbnail
Returns:
Base64 encoded thumbnail
"""
if not PILLOW_AVAILABLE:
return None
try:
# Open the image
with Image.open(image_path) as img:
# Calculate thumbnail size preserving aspect ratio
width, height = img.size
if width > height:
new_width = max_size
new_height = int(height * (max_size / width))
else:
new_height = max_size
new_width = int(width * (max_size / height))
# Create thumbnail
thumbnail = img.resize((new_width, new_height), Image.LANCZOS)
# Save to buffer
buffer = io.BytesIO()
thumbnail.save(buffer, format="JPEG", quality=85)
buffer.seek(0)
# Encode as base64
encoded = base64.b64encode(buffer.getvalue()).decode()
return f"data:image/jpeg;base64,{encoded}"
except Exception:
# Return None if thumbnail generation fails
return None
def try_local_ocr_fallback(image_path: Union[str, Path], base64_data_url: str = None) -> str:
"""
Attempt to use local pytesseract OCR as a fallback when API fails
Args:
image_path: Path to the image file
base64_data_url: Optional base64 data URL if already available
Returns:
OCR text string if successful, None if failed
"""
logger.info("Attempting local OCR fallback using pytesseract...")
try:
import pytesseract
from PIL import Image
# Load image - either from path or from base64
if base64_data_url and base64_data_url.startswith('data:image'):
# Extract image from base64
image_data = base64_data_url.split(',', 1)[1]
image_bytes = base64.b64decode(image_data)
image = Image.open(io.BytesIO(image_bytes))
else:
# Load from file path
image_path = Path(image_path) if isinstance(image_path, str) else image_path
image = Image.open(image_path)
# Convert to RGB if not already (pytesseract works best with RGB)
if image.mode != 'RGB':
image = image.convert('RGB')
# Apply image enhancements for better OCR
# Convert to grayscale for better text recognition
image = image.convert('L')
# Enhance contrast
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(2.0) # Higher contrast for better OCR
# Run OCR
ocr_text = pytesseract.image_to_string(image, lang='eng')
if ocr_text and len(ocr_text.strip()) > 50:
logger.info(f"Local OCR successful: extracted {len(ocr_text)} characters")
return ocr_text
else:
logger.warning("Local OCR produced minimal or no text")
return None
except ImportError:
logger.warning("Pytesseract not installed - local OCR not available")
return None
except Exception as e:
logger.error(f"Local OCR fallback failed: {str(e)}")
return None